BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35684626)

  • 1. Automatic Cognitive Fatigue Detection Using Wearable fNIRS and Machine Learning.
    Varandas R; Lima R; Bermúdez I Badia S; Silva H; Gamboa H
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensor Location Optimization of Wireless Wearable fNIRS System for Cognitive Workload Monitoring Using a Data-Driven Approach for Improved Wearability.
    Siddiquee MR; Atri R; Marquez JS; Hasan SMS; Ramon R; Bai O
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32906737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. K-Means Clustering Machine Learning Approach Reveals Groups of Homogeneous Individuals With Unique Brain Activation, Task, and Performance Dynamics Using fNIRS.
    Saikia MJ
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2535-2544. PubMed ID: 37216239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Assessment of Resting-State for Mild Cognitive Impairment Detection: A Functional Near-Infrared Spectroscopy and Deep Learning Approach.
    Yang D; Hong KS
    J Alzheimers Dis; 2021; 80(2):647-663. PubMed ID: 33579839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsupervised fNIRS feature extraction with CAE and ESN autoencoder for driver cognitive load classification.
    Liu R; Reimer B; Song S; Mehler B; Solovey E
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 33307543
    [No Abstract]   [Full Text] [Related]  

  • 6. High-Density Functional Near-Infrared Spectroscopy and Machine Learning for Visual Perception Quantification.
    Xiao H; Li Z; Zhou Y; Gao Z
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Energy-Efficient Wearable Functional Near-infrared Spectroscopy System Employing Dual-level Adaptive Sampling Technique.
    Chen C; Ma Z; Liu Z; Zhou L; Wang G; Li Y; Zhao J
    IEEE Trans Biomed Circuits Syst; 2022 Feb; 16(1):119-128. PubMed ID: 35133967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural Networks.
    Hamid H; Naseer N; Nazeer H; Khan MJ; Khan RA; Shahbaz Khan U
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of motor execution using a hybrid fNIRS-biosignal BCI: a feasibility study.
    Zimmermann R; Marchal-Crespo L; Edelmann J; Lambercy O; Fluet MC; Riener R; Wolf M; Gassert R
    J Neuroeng Rehabil; 2013 Jan; 10():4. PubMed ID: 23336819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification.
    Chiarelli AM; Croce P; Merla A; Zappasodi F
    J Neural Eng; 2018 Jun; 15(3):036028. PubMed ID: 29446352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating deep learning for fNIRS based BCI.
    Hennrich J; Herff C; Heger D; Schultz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2844-7. PubMed ID: 26736884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Between-Subject fNIRS-BCI Study on Detecting Self-Regulated Intention During Walking.
    Li C; Su M; Xu J; Jin H; Sun L
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):531-540. PubMed ID: 31940543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CNN-based classification of fNIRS signals in motor imagery BCI system.
    Ma T; Wang S; Xia Y; Zhu X; Evans J; Sun Y; He S
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33761480
    [No Abstract]   [Full Text] [Related]  

  • 14. Transformer Model for Functional Near-Infrared Spectroscopy Classification.
    Wang Z; Zhang J; Zhang X; Chen P; Wang B
    IEEE J Biomed Health Inform; 2022 Jun; 26(6):2559-2569. PubMed ID: 34986110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal feature selection from fNIRS signals using genetic algorithms for BCI.
    Noori FM; Naseer N; Qureshi NK; Nazeer H; Khan RA
    Neurosci Lett; 2017 Apr; 647():61-66. PubMed ID: 28336339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. fNIRS-GANs: data augmentation using generative adversarial networks for classifying motor tasks from functional near-infrared spectroscopy.
    Nagasawa T; Sato T; Nambu I; Wada Y
    J Neural Eng; 2020 Feb; 17(1):016068. PubMed ID: 31945755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gaming behavior and brain activation using functional near-infrared spectroscopy, Iowa gambling task, and machine learning techniques.
    Kornev D; Nwoji S; Sadeghian R; Esmaili Sardari S; Dashtestani H; He Q; Gandjbakhche A; Aram S
    Brain Behav; 2022 Apr; 12(4):e2536. PubMed ID: 35290722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Wearable Functional Near-Infrared Spectroscopy (fNIRS) System for Obstructive Sleep Apnea Assessment.
    Huang X; Tang J; Luo J; Shu F; Chen C; Chen W
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1837-1846. PubMed ID: 37030671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel wearable ERP-based BCI approach to explicate hunger necessity.
    Çetin E; Bilgin S; Bilgin G
    Neurosci Lett; 2024 Jan; 818():137573. PubMed ID: 38036086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamic responses during standing and sitting activities: a study toward fNIRS-BCI.
    Almulla L; Al-Naib I; Althobaiti M
    Biomed Phys Eng Express; 2020 Jul; 6(5):055005. PubMed ID: 33444236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.