BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35684639)

  • 1. Real-Time Assessment of Mandarin Crop Water Stress Index.
    Appiah SA; Li J; Lan Y; Darko RO; Alordzinu KE; Al Aasmi A; Asenso E; Issaka F; Afful EA; Wang H; Qiao S
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Estimation of Crop Water Stress Index on Tomato Growth.
    Alordzinu KE; Li J; Lan Y; Appiah SA; Al Aasmi A; Wang H
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid Estimation of Water Stress in Choy Sum (
    Al Aasmi A; Alordzinu KE; Li J; Lan Y; Appiah SA; Qiao S
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking plant and soil indices for water stress management in black gram.
    Khorsand A; Rezaverdinejad V; Asgarzadeh H; Majnooni-Heris A; Rahimi A; Besharat S; Sadraddini AA
    Sci Rep; 2021 Jan; 11(1):869. PubMed ID: 33441705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying water stress of safflower (
    Bijanzadeh E; Moosavi SM; Bahadori F
    Heliyon; 2022 Mar; 8(3):e09010. PubMed ID: 35252613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine.
    Möller M; Alchanatis V; Cohen Y; Meron M; Tsipris J; Naor A; Ostrovsky V; Sprintsin M; Cohen S
    J Exp Bot; 2007; 58(4):827-38. PubMed ID: 16968884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorophyll Response to Water Stress and the Potential of Using Crop Water Stress Index in Sugar Beet Farming.
    Yetik AK; Candoğan BN
    Sugar Tech; 2023; 25(1):57-68. PubMed ID: 35966232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of leaf water potential by thermal imagery and spatial analysis.
    Cohen Y; Alchanatis V; Meron M; Saranga Y; Tsipris J
    J Exp Bot; 2005 Jul; 56(417):1843-52. PubMed ID: 15897226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction of 3D distribution of potato plant CWSI based on thermal infrared image and binocular stereovision system.
    Wang L; Miao Y; Han Y; Li H; Zhang M; Peng C
    Front Plant Sci; 2022; 13():1104390. PubMed ID: 36762177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ground-Based Hyperspectral Remote Sensing for Estimating Water Stress in Tomato Growth in Sandy Loam and Silty Loam Soils.
    Alordzinu KE; Li J; Lan Y; Appiah SA; Al Aasmi A; Wang H; Liao J; Sam-Amoah LK; Qiao S
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of infrared thermal imaging as a non-destructive screening tool for identifying drought-tolerant lentil genotypes.
    Biju S; Fuentes S; Gupta D
    Plant Physiol Biochem; 2018 Jun; 127():11-24. PubMed ID: 29544209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effectiveness of vegetation indices and UAV-multispectral imageries in assessing the response of hybrid maize (Zea mays L.) to water deficit stress under field environment.
    Pipatsitee P; Tisarum R; Taota K; Samphumphuang T; Eiumnoh A; Singh HP; Cha-Um S
    Environ Monit Assess; 2022 Nov; 195(1):128. PubMed ID: 36402920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of thermal imaging to determine leaf conductance along a canopy gradient in European beech (Fagus sylvatica).
    Reinert S; Bögelein R; Thomas FM
    Tree Physiol; 2012 Mar; 32(3):294-302. PubMed ID: 22427372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes.
    Grant OM; Tronina L; Jones HG; Chaves MM
    J Exp Bot; 2007; 58(4):815-25. PubMed ID: 17032729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water Deficit Diagnosis of Winter Wheat Based on Thermal Infrared Imaging.
    Ma S; Liu S; Gao Z; Wang X; Ma S; Wang S
    Plants (Basel); 2024 Jan; 13(3):. PubMed ID: 38337894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an Open-Source Thermal Image Processing Software for Improving Irrigation Management in Potato Crops (
    Cucho-Padin G; Rinza J; Ninanya J; Loayza H; Quiroz R; Ramírez DA
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31947632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drought stress resistance indicators of chickpea varieties grown under deficit irrigation conditions.
    Ucak AB; Arslan H
    PeerJ; 2023; 11():e14818. PubMed ID: 36923507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of water deficit and salinity stress on late mandarin trees.
    Pagán E; Robles JM; Temnani A; Berríos P; Botía P; Pérez-Pastor A
    Sci Total Environ; 2022 Jan; 803():150109. PubMed ID: 34525761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining thermal imaging and soil water content sensors to assess tree water status in pear trees.
    Blanco V; Willsea N; Campbell T; Howe O; Kalcsits L
    Front Plant Sci; 2023; 14():1197437. PubMed ID: 37346137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring soil moisture in winter wheat with crop water stress index based on canopy-air temperature time lag effect.
    Zhang Q; Yang X; Liu C; Yang N; Yu G; Zhang Z; Chen Y; Yao Y; Hu X
    Int J Biometeorol; 2024 Apr; 68(4):647-659. PubMed ID: 38172400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.