These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 35684639)
1. Real-Time Assessment of Mandarin Crop Water Stress Index. Appiah SA; Li J; Lan Y; Darko RO; Alordzinu KE; Al Aasmi A; Asenso E; Issaka F; Afful EA; Wang H; Qiao S Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684639 [TBL] [Abstract][Full Text] [Related]
2. Rapid Estimation of Crop Water Stress Index on Tomato Growth. Alordzinu KE; Li J; Lan Y; Appiah SA; Al Aasmi A; Wang H Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372375 [TBL] [Abstract][Full Text] [Related]
3. Rapid Estimation of Water Stress in Choy Sum ( Al Aasmi A; Alordzinu KE; Li J; Lan Y; Appiah SA; Qiao S Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270842 [TBL] [Abstract][Full Text] [Related]
4. Linking plant and soil indices for water stress management in black gram. Khorsand A; Rezaverdinejad V; Asgarzadeh H; Majnooni-Heris A; Rahimi A; Besharat S; Sadraddini AA Sci Rep; 2021 Jan; 11(1):869. PubMed ID: 33441705 [TBL] [Abstract][Full Text] [Related]
5. Quantifying water stress of safflower ( Bijanzadeh E; Moosavi SM; Bahadori F Heliyon; 2022 Mar; 8(3):e09010. PubMed ID: 35252613 [TBL] [Abstract][Full Text] [Related]
6. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. Möller M; Alchanatis V; Cohen Y; Meron M; Tsipris J; Naor A; Ostrovsky V; Sprintsin M; Cohen S J Exp Bot; 2007; 58(4):827-38. PubMed ID: 16968884 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of crop water stress index of wheat by using machine learning models. Yadav A; Narakala LM; Upreti H; Das Singhal G Environ Monit Assess; 2024 Sep; 196(10):970. PubMed ID: 39312101 [TBL] [Abstract][Full Text] [Related]
8. Chlorophyll Response to Water Stress and the Potential of Using Crop Water Stress Index in Sugar Beet Farming. Yetik AK; Candoğan BN Sugar Tech; 2023; 25(1):57-68. PubMed ID: 35966232 [TBL] [Abstract][Full Text] [Related]
9. Estimation of leaf water potential by thermal imagery and spatial analysis. Cohen Y; Alchanatis V; Meron M; Saranga Y; Tsipris J J Exp Bot; 2005 Jul; 56(417):1843-52. PubMed ID: 15897226 [TBL] [Abstract][Full Text] [Related]
10. Extraction of 3D distribution of potato plant CWSI based on thermal infrared image and binocular stereovision system. Wang L; Miao Y; Han Y; Li H; Zhang M; Peng C Front Plant Sci; 2022; 13():1104390. PubMed ID: 36762177 [TBL] [Abstract][Full Text] [Related]
11. Ground-Based Hyperspectral Remote Sensing for Estimating Water Stress in Tomato Growth in Sandy Loam and Silty Loam Soils. Alordzinu KE; Li J; Lan Y; Appiah SA; Al Aasmi A; Wang H; Liao J; Sam-Amoah LK; Qiao S Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502595 [TBL] [Abstract][Full Text] [Related]
12. The use of infrared thermal imaging as a non-destructive screening tool for identifying drought-tolerant lentil genotypes. Biju S; Fuentes S; Gupta D Plant Physiol Biochem; 2018 Jun; 127():11-24. PubMed ID: 29544209 [TBL] [Abstract][Full Text] [Related]
13. Parametrization of lower limit temperature in crop water stress index model: A case study of Ba YJ; Liu LQ; Peng Q; Zhang G; Lu S; Luo KS; Zhang JS Ying Yong Sheng Tai Xue Bao; 2024 Jul; 35(7):1866-1876. PubMed ID: 39233416 [TBL] [Abstract][Full Text] [Related]
14. Effectiveness of vegetation indices and UAV-multispectral imageries in assessing the response of hybrid maize (Zea mays L.) to water deficit stress under field environment. Pipatsitee P; Tisarum R; Taota K; Samphumphuang T; Eiumnoh A; Singh HP; Cha-Um S Environ Monit Assess; 2022 Nov; 195(1):128. PubMed ID: 36402920 [TBL] [Abstract][Full Text] [Related]
15. Use of thermal imaging to determine leaf conductance along a canopy gradient in European beech (Fagus sylvatica). Reinert S; Bögelein R; Thomas FM Tree Physiol; 2012 Mar; 32(3):294-302. PubMed ID: 22427372 [TBL] [Abstract][Full Text] [Related]
16. Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. Grant OM; Tronina L; Jones HG; Chaves MM J Exp Bot; 2007; 58(4):815-25. PubMed ID: 17032729 [TBL] [Abstract][Full Text] [Related]
17. Water Deficit Diagnosis of Winter Wheat Based on Thermal Infrared Imaging. Ma S; Liu S; Gao Z; Wang X; Ma S; Wang S Plants (Basel); 2024 Jan; 13(3):. PubMed ID: 38337894 [TBL] [Abstract][Full Text] [Related]
18. Development of an Open-Source Thermal Image Processing Software for Improving Irrigation Management in Potato Crops ( Cucho-Padin G; Rinza J; Ninanya J; Loayza H; Quiroz R; Ramírez DA Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31947632 [TBL] [Abstract][Full Text] [Related]
19. Drought stress resistance indicators of chickpea varieties grown under deficit irrigation conditions. Ucak AB; Arslan H PeerJ; 2023; 11():e14818. PubMed ID: 36923507 [TBL] [Abstract][Full Text] [Related]
20. Effects of water deficit and salinity stress on late mandarin trees. Pagán E; Robles JM; Temnani A; Berríos P; Botía P; Pérez-Pastor A Sci Total Environ; 2022 Jan; 803():150109. PubMed ID: 34525761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]