These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35684693)

  • 1. Parameter Optimization of a Magnetic Coupled Piezoelectric Energy Harvester with the Homogenized Material-Numerical Approach and Experimental Study.
    Koszewnik A; Ołdziej D; Amaro MB
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Analysis and Experimental Verification of Damage Identification Metrics for Smart Beam with MFC Elements to Support Structural Health Monitoring.
    Koszewnik A; Lesniewski K; Pakrashi V
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Multilayered (Bi,Sc)O
    Kim BS; Ji JH; Kim HT; Kim SJ; Koh JH
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32244381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Versatile Model for Describing Energy Harvesting Characteristics of Composite-Laminated Piezoelectric Cantilever Patches.
    Xue X; Sun Q; Ma Q; Wang J
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Mechanical Couplings on the Dynamical Behavior and Energy Harvesting of a Composite Structure.
    Borowiec M; Gawryluk J; Bochenski M
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33375258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of an acoustic energy harvester consisting of electro-spun polyvinylidene difluoride nanofibers.
    Zhang R; Shao H; Lin T; Wang X
    J Acoust Soc Am; 2022 Jun; 151(6):3838. PubMed ID: 35778177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.
    Koven R; Mills M; Gale R; Aksak B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow.
    Song R; Hou C; Yang C; Yang X; Guo Q; Shan X
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical Modelling and Optimization of a Piezoelectric Cantilever Energy Harvester with In-Span Attachment.
    Homayouni-Amlashi A; Mohand-Ousaid A; Rakotondrabe M
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32545825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research and Design of Energy-Harvesting System Based on Macro Fiber Composite Cantilever Beam Applied in Low-Frequency and Low-Speed Water Flow.
    Huang R; Zhou J; Shen J; Tian J; Zhou J; Chen W
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Analysis of Signal Response Characteristic of Piezoelectric Energy Harvesters Embedded in Pavement.
    Yang H; Zhao Q; Guo X; Zhang W; Liu P; Wang L
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32570889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Linear-Arc Composite Beam Piezoelectric Energy Harvester Modeling and Finite Element Analysis.
    Zhang X; Guo Y; Zhu F; Chen X; Tian H; Xu H
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Magnetically Coupled Piezoelectric-Electromagnetic Low-Frequency Multidirection Hybrid Energy Harvester.
    Zhu Y; Zhang Z; Zhang P; Tan Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Cost Manufacturing of Monolithic Resonant Piezoelectric Devices for Energy Harvesting Using 3D Printing.
    Duque M; Murillo G
    Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design optimization of PVDF-based piezoelectric energy harvesters.
    Song J; Zhao G; Li B; Wang J
    Heliyon; 2017 Sep; 3(9):e00377. PubMed ID: 28948235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometrical Investigation of Piezoelectric Patches for Broadband Energy Harvesting in Non-Deterministic Composite Plates.
    Muthalif AGA; Ali A; Renno J; Wahid AN; Nor KAM; Nordin NHD
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation and Experiment of Active Vibration Control Based on Flexible Piezoelectric MFC Composed of PZT and PI Layer.
    Li C; Shen L; Shao J; Fang J
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37111966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Piezoelectric Particulate Composite for Energy Harvesting from Mechanical Vibration.
    Grzybek D; Kata D; Sikora W; Sapiński B; Micek P; Pamuła H; Huebner J; Rutkowski P
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33147792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and Analysis of Upright Piezoelectric Energy Harvester under Aerodynamic Vortex-induced Vibration.
    Jia J; Shan X; Upadrashta D; Xie T; Yang Y; Song R
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30562985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.