These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35684695)

  • 1. Conformal Integration of Efficient Conductive-Ink-Printed Antennas in Smart Suitcases for LPWAN-Based Luggage Tracking.
    Lima de Paula I; Rogier H; Van Torre P
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cost-Driven Design of Printed Wideband Antennas with Reduced Silver Ink Consumption for the Internet of Things.
    Claus N; Verhaevert J; Rogier H
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screen Printing Carbon Nanotubes Textiles Antennas for Smart Wearables.
    Ibanez Labiano I; Arslan D; Ozden Yenigun E; Asadi A; Cebeci H; Alomainy A
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Realization of Wearable Textile Slotted Waveguide Antennas.
    Mikulić D; Šopp E; Bonefačić D; Bartolić J; Šipuš Z
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screen Printed Antennas on Fiber-Based Substrates for Sustainable HF RFID Assisted E-Fulfilment Smart Packaging.
    Machiels J; Appeltans R; Bauer DK; Segers E; Henckens Z; Van Rompaey W; Adons D; Peeters R; Geiβler M; Kuehnoel K; Tempel L; Weissbach T; Hübler AC; Verma A; Ferraris E; Deferme W; Buntinx M
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks.
    Shao Y; Wei L; Wu X; Jiang C; Yao Y; Peng B; Chen H; Huangfu J; Ying Y; Zhang CJ; Ping J
    Nat Commun; 2022 Jun; 13(1):3223. PubMed ID: 35680851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smart Coat with a Fully-Embedded Textile Antenna for IoT Applications.
    Loss C; Gonçalves R; Lopes C; Pinho P; Salvado R
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27338407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Printed UHF RFID antennas with high efficiencies using nano-particle silver ink.
    Lee Y; Kim CH; Shin DY; Kim YG
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6425-8. PubMed ID: 22121728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Dual-Band Conformal Antenna Based on Highly Conductive Graphene-Assembled Films for 5G WLAN Applications.
    Hu Z; Xiao Z; Jiang S; Song R; He D
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Textile Slotted Waveguide Antennas for Body-Centric Applications.
    Mikulić D; Šopp E; Bonefačić D; Šipuš Z
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive antenna using inkjet overprinting with particle-free conductive inks.
    Komoda N; Nogi M; Suganuma K; Otsuka K
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5732-6. PubMed ID: 23075475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compact Planar Ultrawideband Antennas with 3.5/5.2/5.8 GHz Triple Band-Notched Characteristics for Internet of Things Applications.
    Dong J; Li Q; Deng L
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28208633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance printable 2.4 GHz graphene-based antenna using water-transferring technology.
    Wang W; Ma C; Zhang X; Shen J; Hanagata N; Huangfu J; Xu M
    Sci Technol Adv Mater; 2019; 20(1):870-875. PubMed ID: 31489056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Electromagnetic Properties of a Conformal Ultra Wideband Antenna Integrated in Three-Dimensional Woven Fabrics.
    Kuang Y; Yao L; Yu SH; Tan S; Fan XJ; Qiu YP
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Design Approach for Compact Wearable Antennas Based on Metasurfaces.
    Zhang K; Vandenbosch GAE; Yan S
    IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):918-927. PubMed ID: 32746359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High gain modified Vivaldi vehicular antenna for IoV communications in 5G network.
    Kapoor A; Kumar P; Mishra R
    Heliyon; 2022 May; 8(5):e09336. PubMed ID: 35521503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additively manufactured flexible on-package phased array antennas for 5G/mmWave wearable and conformal digital twin and massive MIMO applications.
    Hu K; Zhou Y; Sitaraman SK; Tentzeris MM
    Sci Rep; 2023 Aug; 13(1):12515. PubMed ID: 37532806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and implementation of compact dual-band conformal antenna for leadless cardiac pacemaker system.
    Sharma D; Kanaujia BK; Kaim V; Mittra R; Arya RK; Matekovits L
    Sci Rep; 2022 Feb; 12(1):3165. PubMed ID: 35210497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Printed, flexible, compact UHF-RFID sensor tags enabled by hybrid electronics.
    Baumbauer CL; Anderson MG; Ting J; Sreekumar A; Rabaey JM; Arias AC; Thielens A
    Sci Rep; 2020 Oct; 10(1):16543. PubMed ID: 33024141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Use of 3D Printing Technology for Manufacturing Metal Antennas in the 5G/IoT Context.
    Helena D; Ramos A; Varum T; Matos JN
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34064723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.