These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
443 related articles for article (PubMed ID: 35684860)
1. Validation of Non-Restrictive Inertial Gait Analysis of Individuals with Incomplete Spinal Cord Injury in Clinical Settings. Haji Hassani R; Willi R; Rauter G; Bolliger M; Seel T Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684860 [TBL] [Abstract][Full Text] [Related]
2. Validation of wearable inertial sensor-based gait analysis system for measurement of spatiotemporal parameters and lower extremity joint kinematics in sagittal plane. Patel G; Mullerpatan R; Agarwal B; Shetty T; Ojha R; Shaikh-Mohammed J; Sujatha S Proc Inst Mech Eng H; 2022 May; 236(5):686-696. PubMed ID: 35001713 [TBL] [Abstract][Full Text] [Related]
3. Body-Worn IMU-Based Human Hip and Knee Kinematics Estimation during Treadmill Walking. McGrath T; Stirling L Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408159 [TBL] [Abstract][Full Text] [Related]
4. Kinematics and temporospatial parameters during gait from inertial motion capture in adults with and without HIV: a validity and reliability study. Berner K; Cockcroft J; Louw Q Biomed Eng Online; 2020 Jul; 19(1):57. PubMed ID: 32709239 [TBL] [Abstract][Full Text] [Related]
5. Inertial motion capture validation of 3D knee kinematics at various gait speed on the treadmill with a double-pose calibration. Robert-Lachaine X; Parent G; Fuentes A; Hagemeister N; Aissaoui R Gait Posture; 2020 Mar; 77():132-137. PubMed ID: 32035296 [TBL] [Abstract][Full Text] [Related]
6. Concurrent validity and within-session reliability of gait kinematics measured using an inertial motion capture system with repeated calibration. Berner K; Cockcroft J; Morris LD; Louw Q J Bodyw Mov Ther; 2020 Oct; 24(4):251-260. PubMed ID: 33218520 [TBL] [Abstract][Full Text] [Related]
7. Validation of inertial measurement units based on waveform similarity assessment against a photogrammetry system for gait kinematic analysis. Blanco-Coloma L; García-González L; Sinovas-Alonso I; Torio-Álvarez S; Martos-Hernández P; González-Expósito S; Gil-Agudo Á; Herrera-Valenzuela D Front Bioeng Biotechnol; 2024; 12():1449698. PubMed ID: 39193230 [TBL] [Abstract][Full Text] [Related]
8. Using Inertial Measurement Unit Sensor Single Axis Rotation Angles for Knee and Hip Flexion Angle Calculations During Gait. Oliveira N; Park J; Barrance P IEEE J Transl Eng Health Med; 2023; 11():80-86. PubMed ID: 36704243 [TBL] [Abstract][Full Text] [Related]
10. Validation of inertial measurement units with optical tracking system in patients operated with Total hip arthroplasty. Zügner R; Tranberg R; Timperley J; Hodgins D; Mohaddes M; Kärrholm J BMC Musculoskelet Disord; 2019 Feb; 20(1):52. PubMed ID: 30727979 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous validation of wearable motion capture system for lower body applications: over single plane range of motion (ROM) and gait activities. Mihcin S Biomed Tech (Berl); 2022 Jun; 67(3):185-199. PubMed ID: 35575784 [TBL] [Abstract][Full Text] [Related]
12. Calibration-Free Gait Assessment by Foot-Worn Inertial Sensors. Laidig D; Jocham AJ; Guggenberger B; Adamer K; Fischer M; Seel T Front Digit Health; 2021; 3():736418. PubMed ID: 34806077 [TBL] [Abstract][Full Text] [Related]
13. Validity Evaluation of an Inertial Measurement Unit (IMU) in Gait Analysis Using Statistical Parametric Mapping (SPM). Park S; Yoon S Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070344 [TBL] [Abstract][Full Text] [Related]
14. Stance and swing phase knee flexion recover at different rates following total knee arthroplasty: An inertial measurement unit study. Chapman RM; Moschetti WE; Van Citters DW J Biomech; 2019 Feb; 84():129-137. PubMed ID: 30630627 [TBL] [Abstract][Full Text] [Related]
15. Inertial measurement units for the detection of the effects of simulated leg length inequalities. Siebers HL; Eschweiler J; Quack VM; Tingart M; Betsch M J Orthop Surg Res; 2021 Feb; 16(1):142. PubMed ID: 33596939 [TBL] [Abstract][Full Text] [Related]
16. Optimization of IMU Sensor Placement for the Measurement of Lower Limb Joint Kinematics. Niswander W; Wang W; Kontson K Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33105876 [TBL] [Abstract][Full Text] [Related]
17. Effects of camera viewing angles on tracking kinematic gait patterns using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2. Yeung LF; Yang Z; Cheng KC; Du D; Tong RK Gait Posture; 2021 Jun; 87():19-26. PubMed ID: 33878509 [TBL] [Abstract][Full Text] [Related]
18. Gait kinematic analysis in patients with a mild form of central cord syndrome. Gil-Agudo A; Pérez-Nombela S; Forner-Cordero A; Pérez-Rizo E; Crespo-Ruiz B; del Ama-Espinosa A J Neuroeng Rehabil; 2011 Feb; 8():7. PubMed ID: 21288347 [TBL] [Abstract][Full Text] [Related]
19. IMUs Can Estimate Hip and Knee Range of Motion during Walking Tasks but Are Not Sensitive to Changes in Load or Grade. Fain A; McCarthy A; Nindl BC; Fuller JT; Wills JA; Doyle TLA Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475210 [TBL] [Abstract][Full Text] [Related]
20. Validation of Novel Relative Orientation and Inertial Sensor-to-Segment Alignment Algorithms for Estimating 3D Hip Joint Angles. Adamowicz L; Gurchiek RD; Ferri J; Ursiny AT; Fiorentino N; McGinnis RS Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]