These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35684864)

  • 1. Web and MATLAB-Based Platform for UAV Flight Management and Multispectral Image Processing.
    Aliane N; Muñoz CQG; Sánchez-Soriano J
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Multiple UAV Collaborative Driving Systems for Improving Field Phenotyping.
    Lee HS; Shin BS; Thomasson JA; Wang T; Zhang Z; Han X
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management.
    Torres-Sánchez J; López-Granados F; De Castro AI; Peña-Barragán JM
    PLoS One; 2013; 8(3):e58210. PubMed ID: 23483997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Improved Crop Scouting Technique Incorporating Unmanned Aerial Vehicle-Assisted Multispectral Crop Imaging into Conventional Scouting Practice for Gummy Stem Blight in Watermelon.
    Kalischuk M; Paret ML; Freeman JH; Raj D; Da Silva S; Eubanks S; Wiggins DJ; Lollar M; Marois JJ; Mellinger HC; Das J
    Plant Dis; 2019 Jul; 103(7):1642-1650. PubMed ID: 31082305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images.
    Tunca E; Köksal ES; Çetin S; Ekiz NM; Balde H
    Environ Monit Assess; 2018 Oct; 190(11):682. PubMed ID: 30374821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on UAV Route Optimization Method Based on Double Target of Confidence and Ambiguity.
    Zhang H
    Front Neurorobot; 2021; 15():694899. PubMed ID: 34335221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture.
    Maes WH; Steppe K
    Trends Plant Sci; 2019 Feb; 24(2):152-164. PubMed ID: 30558964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multispectral remote sensing for accurate acquisition of rice phenotypes: Impacts of radiometric calibration and unmanned aerial vehicle flying altitudes.
    Luo S; Jiang X; Yang K; Li Y; Fang S
    Front Plant Sci; 2022; 13():958106. PubMed ID: 36035659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced UAV-WSN System for Intelligent Monitoring in Precision Agriculture.
    Popescu D; Stoican F; Stamatescu G; Ichim L; Dragana C
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32028736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic Hotspot and Sun Glint Detection in UAV Multispectral Images.
    Ortega-Terol D; Hernandez-Lopez D; Ballesteros R; Gonzalez-Aguilera D
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29036930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UAV Mission Planning with SAR Application.
    Stecz W; Gromada K
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32079279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping multispectral Digital Images using a Cloud Computing software: applications from UAV images.
    Saura JR; Reyes-Menendez A; Palos-Sanchez P
    Heliyon; 2019 Feb; 5(2):e01277. PubMed ID: 30891516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano and Micro Unmanned Aerial Vehicles (UAVs): A New Grand Challenge for Precision Agriculture?
    Gago J; Estrany J; Estes L; Fernie AR; Alorda B; Brotman Y; Flexas J; Escalona JM; Medrano H
    Curr Protoc Plant Biol; 2020 Mar; 5(1):e20103. PubMed ID: 32074410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evapotranspiration Estimation with Small UAVs in Precision Agriculture.
    Niu H; Hollenbeck D; Zhao T; Wang D; Chen Y
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data].
    Gao L; Li CC; Wang BS; Yang Gui-jun ; Wang L; Fu K
    Ying Yong Sheng Tai Xue Bao; 2016 Jan; 27(1):191-200. PubMed ID: 27228609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Vegetation Segmentation Approach for Cropped Fields Based on Threshold Detection from Hue Histograms.
    Hassanein M; Lari Z; El-Sheimy N
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29670055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-altitude public air route network for UAV management constructed by global subdivision grids.
    Zhai W; Han B; Li D; Duan J; Cheng C
    PLoS One; 2021; 16(4):e0249680. PubMed ID: 33852616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agricultural plant cataloging and establishment of a data framework from UAV-based crop images by computer vision.
    Günder M; Ispizua Yamati FR; Kierdorf J; Roscher R; Mahlein AK; Bauckhage C
    Gigascience; 2022 Jun; 11():. PubMed ID: 35715875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research.
    Shi Y; Thomasson JA; Murray SC; Pugh NA; Rooney WL; Shafian S; Rajan N; Rouze G; Morgan CL; Neely HL; Rana A; Bagavathiannan MV; Henrickson J; Bowden E; Valasek J; Olsenholler J; Bishop MP; Sheridan R; Putman EB; Popescu S; Burks T; Cope D; Ibrahim A; McCutchen BF; Baltensperger DD; Avant RV; Vidrine M; Yang C
    PLoS One; 2016; 11(7):e0159781. PubMed ID: 27472222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of remote-weed mapping and an autonomous spraying unmanned aerial vehicle for site-specific weed management.
    Hunter JE; Gannon TW; Richardson RJ; Yelverton FH; Leon RG
    Pest Manag Sci; 2020 Apr; 76(4):1386-1392. PubMed ID: 31622004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.