These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 35684869)
1. Monitoring the Early Strength Development of Cement Mortar with Piezoelectric Transducers Based on Eigenfrequency Analysis Method. Wang G; Qiu W; Wang D; Chen H; Wang X; Zhang M Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684869 [TBL] [Abstract][Full Text] [Related]
2. Application of alkaliphilic biofilm-forming bacteria to improve compressive strength of cement-sand mortar. Park SJ; Chun WY; Kim WJ; Ghim SY J Microbiol Biotechnol; 2012 Mar; 22(3):385-9. PubMed ID: 22450795 [TBL] [Abstract][Full Text] [Related]
3. Influence of pore structure on compressive strength of cement mortar. Zhao H; Xiao Q; Huang D; Zhang S ScientificWorldJournal; 2014; 2014():247058. PubMed ID: 24757414 [TBL] [Abstract][Full Text] [Related]
4. Hydration and strength development in blended cement with ultrafine granulated copper slag. Feng Y; Zhang Q; Chen Q; Wang D; Guo H; Liu L; Yang Q PLoS One; 2019; 14(4):e0215677. PubMed ID: 31026294 [TBL] [Abstract][Full Text] [Related]
5. The effects of nano-materials on the behaviors of sludge mortar specimens. Luo HL; Lin DF; Kuo WT Water Sci Technol; 2004; 50(9):57-65. PubMed ID: 15580995 [TBL] [Abstract][Full Text] [Related]
6. A comprehensive performance evaluation of the cement-based expanded perlite plastering mortar. Yi W; Xiling Z; Jinglin Y; Wenxuan W; Tian T Sci Total Environ; 2023 Feb; 858(Pt 2):159705. PubMed ID: 36306833 [TBL] [Abstract][Full Text] [Related]
7. Evaluating the effectiveness of waste glass powder for the compressive strength improvement of cement mortar using experimental and machine learning methods. Khan K; Ahmad W; Amin MN; Rafiq MI; Abu Arab AM; Alabdullah IA; Alabduljabbar H; Mohamed A Heliyon; 2023 May; 9(5):e16288. PubMed ID: 37234626 [TBL] [Abstract][Full Text] [Related]
8. The effects of different types of nano-silicon dioxide additives on the properties of sludge ash mortar. Luo HL; Chang WC; Lin DF J Air Waste Manag Assoc; 2009 Apr; 59(4):440-6. PubMed ID: 19418818 [TBL] [Abstract][Full Text] [Related]
9. Compressive Strength Evaluation of Ordinary Portland Cement Mortar Blended with Hydrogen Nano-Bubble Water and Graphene. Kim YH; Park Y; Bae S; Kim SY; Han JG J Nanosci Nanotechnol; 2020 Jan; 20(1):647-652. PubMed ID: 31383227 [TBL] [Abstract][Full Text] [Related]
10. Reuse of de-inking sludge from wastepaper recycling in cement mortar products. Yan S; Sagoe-Crentsil K; Shapiro G J Environ Manage; 2011 Aug; 92(8):2085-90. PubMed ID: 21507557 [TBL] [Abstract][Full Text] [Related]
11. Effect of metakaolin on strength and efflorescence quantity of cement-based composites. Weng TL; Lin WT; Cheng A ScientificWorldJournal; 2013; 2013():606524. PubMed ID: 23737719 [TBL] [Abstract][Full Text] [Related]
12. Immobilization in cement mortar of chromium removed from water using titania nanoparticles. Husnain A; Qazi IA; Khaliq W; Arshad M J Environ Manage; 2016 May; 172():10-7. PubMed ID: 26915979 [TBL] [Abstract][Full Text] [Related]
13. Quasi-static and dynamic experimental studies on the tensile strength and failure pattern of concrete and mortar discs. Jin X; Hou C; Fan X; Lu C; Yang H; Shu X; Wang Z Sci Rep; 2017 Nov; 7(1):15305. PubMed ID: 29127372 [TBL] [Abstract][Full Text] [Related]
14. Application of Bacillus subtilis 168 as a multifunctional agent for improvement of the durability of cement mortar. Park SJ; Park JM; Kim WJ; Ghim SY J Microbiol Biotechnol; 2012 Nov; 22(11):1568-74. PubMed ID: 23124349 [TBL] [Abstract][Full Text] [Related]
15. Biomineralization in metakaolin modified cement mortar to improve its strength with lowered cement content. Li M; Zhu X; Mukherjee A; Huang M; Achal V J Hazard Mater; 2017 May; 329():178-184. PubMed ID: 28135655 [TBL] [Abstract][Full Text] [Related]
16. Recycling red mud from the production of aluminium as a red cement-based mortar. Yang X; Zhao J; Li H; Zhao P; Chen Q Waste Manag Res; 2017 May; 35(5):500-507. PubMed ID: 28142600 [TBL] [Abstract][Full Text] [Related]
17. Investigating the Mechanical Properties and Durability of Metakaolin-Incorporated Mortar by Different Curing Methods. Dong Y; Pei L; Fu J; Yang Y; Liu T; Liang H; Yang H Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329488 [TBL] [Abstract][Full Text] [Related]
18. Oyster shell as substitute for aggregate in mortar. Yoon H; Park S; Lee K; Park J Waste Manag Res; 2004 Jun; 22(3):158-70. PubMed ID: 15253499 [TBL] [Abstract][Full Text] [Related]
19. Bioremediation of mortar made from Ordinary Portland Cement degraded by Ngari RW; Thiong'o JK; Wachira JM; Muriithi G; Mutitu DK Heliyon; 2021 Jun; 7(6):e07215. PubMed ID: 34159272 [TBL] [Abstract][Full Text] [Related]
20. Difference in Strength Development between Cement-Treated Sand and Mortar with Various Cement Types and Curing Temperatures. Ho LS; Nakarai K; Eguchi K; Ogawa Y Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33171930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]