BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35684904)

  • 1. Pixel-Reasoning-Based Robotics Fine Grasping for Novel Objects with Deep EDINet Structure.
    Shi C; Miao C; Zhong X; Zhong X; Hu H; Liu Q
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GR-ConvNet v2: A Real-Time Multi-Grasp Detection Network for Robotic Grasping.
    Kumra S; Joshi S; Sahin F
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Event-Based Robotic Grasping Detection With Neuromorphic Vision Sensor and Event-Grasping Dataset.
    Li B; Cao H; Qu Z; Hu Y; Wang Z; Liang Z
    Front Neurorobot; 2020; 14():51. PubMed ID: 33162883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secure Grasping Detection of Objects in Stacked Scenes Based on Single-Frame RGB Images.
    Xu H; Sun Q; Liu W; Yang M
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neural learning approach for simultaneous object detection and grasp detection in cluttered scenes.
    Zhang Y; Xie L; Li Y; Li Y
    Front Comput Neurosci; 2023; 17():1110889. PubMed ID: 36890968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive Grasping of Moving Objects through Tactile Sensing.
    Lynch P; Cullinan MF; McGinn C
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive critic neural network-based object grasping control using a three-finger gripper.
    Jagannathan S; Galan G
    IEEE Trans Neural Netw; 2004 Mar; 15(2):395-407. PubMed ID: 15384532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning Method for Grasping Novel Objects Using Dexterous Hands.
    Shang W; Song F; Zhao Z; Gao H; Cong S; Li Z
    IEEE Trans Cybern; 2022 May; 52(5):2750-2762. PubMed ID: 33001823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inflatable Particle-Jammed Robotic Gripper Based on Integration of Positive Pressure and Partial Filling.
    Wang Y; Yang Z; Zhou H; Zhao C; Barimah B; Li B; Xiang C; Li L; Gou X; Luo M
    Soft Robot; 2022 Apr; 9(2):309-323. PubMed ID: 34107751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Robotic Pushing and Grasping Method Based on Vision Transformer and Convolution.
    Yu S; Zhai DH; Xia Y
    IEEE Trans Neural Netw Learn Syst; 2023 Mar; PP():. PubMed ID: 37028295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanically controlled robotic gripper with bistability for fast and adaptive grasping.
    Cai X; Tang B
    Bioinspir Biomim; 2022 Dec; 18(1):. PubMed ID: 36575867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bioinspired Soft Swallowing Gripper for Universal Adaptable Grasping.
    Sui D; Zhu Y; Zhao S; Wang T; Agrawal SK; Zhang H; Zhao J
    Soft Robot; 2022 Feb; 9(1):36-56. PubMed ID: 33275516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lifelong 3D object recognition and grasp synthesis using dual memory recurrent self-organization networks.
    Santhakumar K; Kasaei H
    Neural Netw; 2022 Jun; 150():167-180. PubMed ID: 35313248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, Fabrication, and Performance Test of a New Type of Soft-Robotic Gripper for Grasping.
    Zhang H; Liu W; Yu M; Hou Y
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graph-Based Visual Manipulation Relationship Reasoning Network for Robotic Grasping.
    Zuo G; Tong J; Liu H; Chen W; Li J
    Front Neurorobot; 2021; 15():719731. PubMed ID: 34483872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A two-stage grasp detection method for sequential robotic grasping in stacking scenarios.
    Zhang J; Yin B; Zhong Y; Wei Q; Zhao J; Bilal H
    Math Biosci Eng; 2024 Feb; 21(2):3448-3472. PubMed ID: 38454735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glowing Sucker Octopus (Stauroteuthis syrtensis)-Inspired Soft Robotic Gripper for Underwater Self-Adaptive Grasping and Sensing.
    Wu M; Zheng X; Liu R; Hou N; Afridi WH; Afridi RH; Guo X; Wu J; Wang C; Xie G
    Adv Sci (Weinh); 2022 Jun; 9(17):e2104382. PubMed ID: 35388640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grasping learning, optimization, and knowledge transfer in the robotics field.
    Pozzi L; Gandolla M; Pura F; Maccarini M; Pedrocchi A; Braghin F; Piga D; Roveda L
    Sci Rep; 2022 Mar; 12(1):4481. PubMed ID: 35296691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guided Depth Completion with Instance Segmentation Fusion in Autonomous Driving Applications.
    El-Yabroudi MZ; Abdel-Qader I; Bazuin BJ; Abudayyeh O; Chabaan RC
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond Human Hand: Shape-Adaptive and Reversible Magnetorheological Elastomer-Based Robot Gripper Skin.
    Choi DS; Kim TH; Lee SH; Pang C; Bae JW; Kim SY
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):44147-44155. PubMed ID: 32870646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.