These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 35685142)
1. Computational Intelligence-Based Melanoma Detection and Classification Using Dermoscopic Images. Vaiyapuri T; Balaji P; S S; Alaskar H; Sbai Z Comput Intell Neurosci; 2022; 2022():2370190. PubMed ID: 35685142 [TBL] [Abstract][Full Text] [Related]
2. Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms. Alsaade FW; Aldhyani THH; Al-Adhaileh MH Comput Math Methods Med; 2021; 2021():9998379. PubMed ID: 34055044 [TBL] [Abstract][Full Text] [Related]
3. Artificial Intelligence and Its Effect on Dermatologists' Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study. Maron RC; Utikal JS; Hekler A; Hauschild A; Sattler E; Sondermann W; Haferkamp S; Schilling B; Heppt MV; Jansen P; Reinholz M; Franklin C; Schmitt L; Hartmann D; Krieghoff-Henning E; Schmitt M; Weichenthal M; von Kalle C; Fröhling S; Brinker TJ J Med Internet Res; 2020 Sep; 22(9):e18091. PubMed ID: 32915161 [TBL] [Abstract][Full Text] [Related]
4. Multiclass skin lesion localization and classification using deep learning based features fusion and selection framework for smart healthcare. Maqsood S; Damaševičius R Neural Netw; 2023 Mar; 160():238-258. PubMed ID: 36701878 [TBL] [Abstract][Full Text] [Related]
6. Automatic segmentation and melanoma detection based on color and texture features in dermoscopic images. Oukil S; Kasmi R; Mokrani K; García-Zapirain B Skin Res Technol; 2022 Mar; 28(2):203-211. PubMed ID: 34779062 [TBL] [Abstract][Full Text] [Related]
7. Bluish veil detection and lesion classification using custom deep learnable layers with explainable artificial intelligence (XAI). Rasel MA; Abdul Kareem S; Kwan Z; Yong SS; Obaidellah U Comput Biol Med; 2024 Aug; 178():108758. PubMed ID: 38905895 [TBL] [Abstract][Full Text] [Related]
8. Deep Learning Approaches Towards Skin Lesion Segmentation and Classification from Dermoscopic Images - A Review. Baig R; Bibi M; Hamid A; Kausar S; Khalid S Curr Med Imaging; 2020; 16(5):513-533. PubMed ID: 32484086 [TBL] [Abstract][Full Text] [Related]
9. Computational neural network in melanocytic lesions diagnosis: artificial intelligence to improve diagnosis in dermatology? Aractingi S; Pellacani G Eur J Dermatol; 2019 Apr; 29(S1):4-7. PubMed ID: 31017580 [TBL] [Abstract][Full Text] [Related]
10. Automated Detection of Nonmelanoma Skin Cancer Based on Deep Convolutional Neural Network. Arif M; Philip FM; Ajesh F; Izdrui D; Craciun MD; Geman O J Healthc Eng; 2022; 2022():6952304. PubMed ID: 35186235 [TBL] [Abstract][Full Text] [Related]
11. Novel Approaches for Diagnosing Melanoma Skin Lesions Through Supervised and Deep Learning Algorithms. Premaladha J; Ravichandran KS J Med Syst; 2016 Apr; 40(4):96. PubMed ID: 26872778 [TBL] [Abstract][Full Text] [Related]
12. Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy C-means clustering. Nida N; Irtaza A; Javed A; Yousaf MH; Mahmood MT Int J Med Inform; 2019 Apr; 124():37-48. PubMed ID: 30784425 [TBL] [Abstract][Full Text] [Related]
13. Deep neural networks are superior to dermatologists in melanoma image classification. Brinker TJ; Hekler A; Enk AH; Berking C; Haferkamp S; Hauschild A; Weichenthal M; Klode J; Schadendorf D; Holland-Letz T; von Kalle C; Fröhling S; Schilling B; Utikal JS Eur J Cancer; 2019 Sep; 119():11-17. PubMed ID: 31401469 [TBL] [Abstract][Full Text] [Related]
14. Optimized self-attention based cycle-consistent generative adversarial network adopted melanoma classification from dermoscopic images. Harini P; Madhavi NB; Latha SB; Sasikumar AN Microsc Res Tech; 2024 Jun; 87(6):1271-1285. PubMed ID: 38353334 [TBL] [Abstract][Full Text] [Related]
15. Optimized attention-induced multihead convolutional neural network with efficientnetv2-fostered melanoma classification using dermoscopic images. Maheswari M; Ahamed Ayoobkhan MU; Shirley CP; Lakshmi TRV Med Biol Eng Comput; 2024 Nov; 62(11):3311-3325. PubMed ID: 38833025 [TBL] [Abstract][Full Text] [Related]
16. Does sex matter? Analysis of sex-related differences in the diagnostic performance of a market-approved convolutional neural network for skin cancer detection. Sies K; Winkler JK; Fink C; Bardehle F; Toberer F; Buhl T; Enk A; Blum A; Stolz W; Rosenberger A; Haenssle HA Eur J Cancer; 2022 Mar; 164():88-94. PubMed ID: 35182926 [TBL] [Abstract][Full Text] [Related]
17. Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding. Garcia-Arroyo JL; Garcia-Zapirain B Comput Methods Programs Biomed; 2019 Jan; 168():11-19. PubMed ID: 30527129 [TBL] [Abstract][Full Text] [Related]
18. Melanoma recognition in dermoscopy images using lesion's peripheral region information. Tajeddin NZ; Asl BM Comput Methods Programs Biomed; 2018 Sep; 163():143-153. PubMed ID: 30119849 [TBL] [Abstract][Full Text] [Related]
19. Computer-Aided Diagnosis Algorithm for Classification of Malignant Melanoma Using Deep Neural Networks. Kim CI; Hwang SM; Park EB; Won CH; Lee JH Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450993 [TBL] [Abstract][Full Text] [Related]
20. Assessing the effectiveness of artificial intelligence methods for melanoma: A retrospective review. Cui X; Wei R; Gong L; Qi R; Zhao Z; Chen H; Song K; Abdulrahman AAA; Wang Y; Chen JZS; Chen S; Zhao Y; Gao X J Am Acad Dermatol; 2019 Nov; 81(5):1176-1180. PubMed ID: 31255749 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]