These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35685185)

  • 21. Carbon Nanofiber Double Active Layer and Co-Incorporation as New Anode Modification Strategies for Power-Enhanced Microbial Fuel Cells.
    Barakat NAM; Amen MT; Ali RH; Nassar MM; Fadali OA; Ali MA; Kim HY
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Electricity generation by the microbial fuel cells using carbon nanotube as the anode].
    Liang P; Fan MZ; Cao XX; Huang X; Peng YM; Wang S; Gong QM; Liang J
    Huan Jing Ke Xue; 2008 Aug; 29(8):2356-60. PubMed ID: 18839600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns.
    Yang J; Cheng S; Sun Y; Li C
    Biotechnol Lett; 2017 Oct; 39(10):1515-1520. PubMed ID: 28664313
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells.
    Cheng S; Logan BE
    Bioresour Technol; 2011 Mar; 102(6):4468-73. PubMed ID: 21273062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using live algae at the anode of a microbial fuel cell to generate electricity.
    Xu C; Poon K; Choi MM; Wang R
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15621-35. PubMed ID: 26018284
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells.
    Logan B; Cheng S; Watson V; Estadt G
    Environ Sci Technol; 2007 May; 41(9):3341-6. PubMed ID: 17539547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of a fouling-resistant sustainable cathode for a single-chambered microbial fuel cell.
    Chatterjee P; Ghangrekar MM
    Water Sci Technol; 2014; 69(3):634-9. PubMed ID: 24552738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficacy of electrode position in microbial fuel cell for simultaneous Cr(VI) reduction and bioelectricity production.
    Zhou J; Li M; Zhou W; Hu J; Long Y; Tsang YF; Zhou S
    Sci Total Environ; 2020 Dec; 748():141425. PubMed ID: 32798878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode.
    Wang H; Wang G; Ling Y; Qian F; Song Y; Lu X; Chen S; Tong Y; Li Y
    Nanoscale; 2013 Nov; 5(21):10283-90. PubMed ID: 24057049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon Material Optimized Biocathode for Improving Microbial Fuel Cell Performance.
    Tursun H; Liu R; Li J; Abro R; Wang X; Gao Y; Li Y
    Front Microbiol; 2016; 7():6. PubMed ID: 26858695
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode.
    Zhuang L; Zhou S; Li Y; Yuan Y
    Bioresour Technol; 2010 May; 101(10):3514-9. PubMed ID: 20093009
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Platinum-free, graphene based anodes and air cathodes for single chamber microbial fuel cells.
    Call TP; Carey T; Bombelli P; Lea-Smith DJ; Hooper P; Howe CJ; Torrisi F
    J Mater Chem A Mater; 2017 Dec; 5(45):23872-23886. PubMed ID: 29456857
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells.
    Xia X; Tokash JC; Zhang F; Liang P; Huang X; Logan BE
    Environ Sci Technol; 2013 Feb; 47(4):2085-91. PubMed ID: 23360098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs.
    Cheng S; Kiely P; Logan BE
    Bioresour Technol; 2011 Jan; 102(1):367-71. PubMed ID: 20580223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells.
    Kim JR; Cheng S; Oh SE; Logan BE
    Environ Sci Technol; 2007 Feb; 41(3):1004-9. PubMed ID: 17328216
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Fe, Ni, and Fe/Ni metallic nanoparticles on power production and biosurfactant production from used vegetable oil in the anode chamber of a microbial fuel cell.
    Liu J; Vipulanandan C
    Waste Manag; 2017 Aug; 66():169-177. PubMed ID: 28404510
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional graphene nanosheets as cathode catalysts in standard and supercapacitive microbial fuel cell.
    Santoro C; Kodali M; Kabir S; Soavi F; Serov A; Atanassov P
    J Power Sources; 2017 Jul; 356():371-380. PubMed ID: 28717262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biofouling inhibition and enhancing performance of microbial fuel cell using silver nano-particles as fungicide and cathode catalyst.
    Noori MT; Jain SC; Ghangrekar MM; Mukherjee CK
    Bioresour Technol; 2016 Nov; 220():183-189. PubMed ID: 27567479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells.
    Cheng S; Liu W; Guo J; Sun D; Pan B; Ye Y; Ding W; Huang H; Li F
    Biosens Bioelectron; 2014 Jun; 56():264-70. PubMed ID: 24514078
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.