BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35685933)

  • 21. New family of tungstate-responsive transcriptional regulators in sulfate-reducing bacteria.
    Kazakov AE; Rajeev L; Luning EG; Zane GM; Siddartha K; Rodionov DA; Dubchak I; Arkin AP; Wall JD; Mukhopadhyay A; Novichkov PS
    J Bacteriol; 2013 Oct; 195(19):4466-75. PubMed ID: 23913324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A specific interdomain interaction preserves the structural and binding properties of the ModA protein from the phytopathogen Xanthomonas citri domain interaction and transport in ModA.
    Santacruz-Perez C; Pegos VR; Honorato RV; Verli H; Lindahl E; Barbosa JA; Balan A
    Arch Biochem Biophys; 2013 Nov; 539(1):20-30. PubMed ID: 24035743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromate Binding and Removal by the Molybdate-Binding Protein ModA.
    Karpus J; Bosscher M; Ajiboye I; Zhang L; He C
    Chembiochem; 2017 Apr; 18(7):633-637. PubMed ID: 28150901
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate in welding fume alkaline extracts by HPLC-ICP-MS.
    Ščančar J; Berlinger B; Thomassen Y; Milačič R
    Talanta; 2015 Sep; 142():164-9. PubMed ID: 26003707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molybdate uptake by Agrobacterium tumefaciens correlates with the cellular molybdenum cofactor status.
    Hoffmann MC; Ali K; Sonnenschein M; Robrahn L; Strauss D; Narberhaus F; Masepohl B
    Mol Microbiol; 2016 Sep; 101(5):809-22. PubMed ID: 27196733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Classification of a Haemophilus influenzae ABC transporter HI1470/71 through its cognate molybdate periplasmic binding protein, MolA.
    Tirado-Lee L; Lee A; Rees DC; Pinkett HW
    Structure; 2011 Nov; 19(11):1701-10. PubMed ID: 22078568
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutational analysis of genes of the mod locus involved in molybdenum transport, homeostasis, and processing in Azotobacter vinelandii.
    Mouncey NJ; Mitchenall LA; Pau RN
    J Bacteriol; 1995 Sep; 177(18):5294-302. PubMed ID: 7665518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of Ligand Profiles for
    Fernández M; Rico-Jiménez M; Ortega Á; Daddaoua A; García García AI; Martín-Mora D; Torres NM; Tajuelo A; Matilla MA; Krell T
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31627455
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly selective tungstate transporter protein TupA from Desulfovibrio alaskensis G20.
    Otrelo-Cardoso AR; Nair RR; Correia MAS; Cordeiro RSC; Panjkovich A; Svergun DI; Santos-Silva T; Rivas MG
    Sci Rep; 2017 Jul; 7(1):5798. PubMed ID: 28724964
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ZnuA and zinc homeostasis in Pseudomonas aeruginosa.
    Pederick VG; Eijkelkamp BA; Begg SL; Ween MP; McAllister LJ; Paton JC; McDevitt CA
    Sci Rep; 2015 Aug; 5():13139. PubMed ID: 26290475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A plasmid-encoded mobile genetic element from Pseudomonas aeruginosa that confers heavy metal resistance and virulence.
    Hernández-Ramírez KC; Reyes-Gallegos RI; Chávez-Jacobo VM; Díaz-Magaña A; Meza-Carmen V; Ramírez-Díaz MI
    Plasmid; 2018 Jun; 98():15-21. PubMed ID: 30063910
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of Rhodobacter capsulatus genes encoding a molybdenum transport system and putative molybdenum-pterin-binding proteins.
    Wang G; Angermüller S; Klipp W
    J Bacteriol; 1993 May; 175(10):3031-42. PubMed ID: 8491722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genes related to chromate resistance by Pseudomonas aeruginosa PAO1.
    Rivera SL; Vargas E; Ramírez-Díaz MI; Campos-García J; Cervantes C
    Antonie Van Leeuwenhoek; 2008 Aug; 94(2):299-305. PubMed ID: 18446454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efflux of chromate by Pseudomonas aeruginosa cells expressing the ChrA protein.
    Pimentel BE; Moreno-Sánchez R; Cervantes C
    FEMS Microbiol Lett; 2002 Jul; 212(2):249-54. PubMed ID: 12113942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molybdate transport.
    Self WT; Grunden AM; Hasona A; Shanmugam KT
    Res Microbiol; 2001; 152(3-4):311-21. PubMed ID: 11421278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Utilization of geraniol is dependent on molybdenum in Pseudomonas aeruginosa: evidence for different metabolic routes for oxidation of geraniol and citronellol.
    Höschle B; Jendrossek D
    Microbiology (Reading); 2005 Jul; 151(Pt 7):2277-2283. PubMed ID: 16000717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Binding of ReO4(-) with an engineered MoO4(2-)-binding protein: towards a new approach in radiopharmaceutical applications.
    Aryal BP; Brugarolas P; He C
    J Biol Inorg Chem; 2012 Jan; 17(1):97-106. PubMed ID: 21861186
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of an ABC transporter in complex with its binding protein.
    Hollenstein K; Frei DC; Locher KP
    Nature; 2007 Mar; 446(7132):213-6. PubMed ID: 17322901
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A role for tungsten in the biology of Campylobacter jejuni: tungstate stimulates formate dehydrogenase activity and is transported via an ultra-high affinity ABC system distinct from the molybdate transporter.
    Smart JP; Cliff MJ; Kelly DJ
    Mol Microbiol; 2009 Nov; 74(3):742-57. PubMed ID: 19818021
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cloning, nucleotide sequence, and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505.
    Cervantes C; Ohtake H; Chu L; Misra TK; Silver S
    J Bacteriol; 1990 Jan; 172(1):287-91. PubMed ID: 2152903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.