These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 35686011)

  • 21. Yeast Still a Beast: Diverse Applications of CRISPR/Cas Editing Technology in
    Giersch RM; Finnigan GC
    Yale J Biol Med; 2017 Dec; 90(4):643-651. PubMed ID: 29259528
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR Genome Editing Technology: A Powerful Tool Applied to Developing Agribusiness.
    Maximiano MR; Távora FTPK; Prado GS; Dias SC; Mehta A; Franco OL
    J Agric Food Chem; 2021 Jun; 69(23):6379-6395. PubMed ID: 34097395
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Tale of Two Moieties: Rapidly Evolving CRISPR/Cas-Based Genome Editing.
    Yang L; Chen J
    Trends Biochem Sci; 2020 Oct; 45(10):874-888. PubMed ID: 32616331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR/Cas systems usher in a new era of disease treatment and diagnosis.
    Li R; Wang Q; She K; Lu F; Yang Y
    Mol Biomed; 2022 Oct; 3(1):31. PubMed ID: 36239875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: Current status, future perspectives, and associated challenges.
    Eş I; Gavahian M; Marti-Quijal FJ; Lorenzo JM; Mousavi Khaneghah A; Tsatsanis C; Kampranis SC; Barba FJ
    Biotechnol Adv; 2019; 37(3):410-421. PubMed ID: 30779952
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FDA Regulation of Clinical Applications of CRISPR-CAS Gene-Editing Technology.
    Grant EV
    Food Drug Law J; 2016; 71(4):608-33. PubMed ID: 29140647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture.
    Rao MJ; Wang L
    Planta; 2021 Sep; 254(4):68. PubMed ID: 34498163
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Editing the genome of common cereals (Rice and Wheat): techniques, applications, and industrial aspects.
    Das N; Ghosh Dhar D; Dhar P
    Mol Biol Rep; 2023 Jan; 50(1):739-747. PubMed ID: 36309609
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Applications of CRISPR/Cas gene-editing technology in yeast and fungi.
    Liao B; Chen X; Zhou X; Zhou Y; Shi Y; Ye X; Liao M; Zhou Z; Cheng L; Ren B
    Arch Microbiol; 2021 Dec; 204(1):79. PubMed ID: 34954815
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular evolution and functional modification of plant miRNAs with CRISPR.
    Deng F; Zeng F; Shen Q; Abbas A; Cheng J; Jiang W; Chen G; Shah AN; Holford P; Tanveer M; Zhang D; Chen ZH
    Trends Plant Sci; 2022 Sep; 27(9):890-907. PubMed ID: 35165036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics.
    Liu W; Li L; Jiang J; Wu M; Lin P
    Precis Clin Med; 2021 Sep; 4(3):179-191. PubMed ID: 34541453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clinical trials and promising preclinical applications of CRISPR/Cas gene editing.
    Çerçi B; Uzay IA; Kara MK; Dinçer P
    Life Sci; 2023 Jan; 312():121204. PubMed ID: 36403643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Applying gene editing to tailor precise genetic modifications in plants.
    Van Eck J
    J Biol Chem; 2020 Sep; 295(38):13267-13276. PubMed ID: 32723863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing the quality of staple food crops through CRISPR/Cas-mediated site-directed mutagenesis.
    Adeyinka OS; Tabassum B; Koloko BL; Ogungbe IV
    Planta; 2023 Mar; 257(4):78. PubMed ID: 36913066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The application of CRISPR/Cas technologies to
    Li J; Yu X; Zhang C; Li N; Zhao J
    aBIOTECH; 2022 Jun; 3(2):146-161. PubMed ID: 36304520
    [No Abstract]   [Full Text] [Related]  

  • 36. CRISPR-Cas gene editing technology and its application prospect in medicinal plants.
    Guo M; Chen H; Dong S; Zhang Z; Luo H
    Chin Med; 2022 Mar; 17(1):33. PubMed ID: 35246186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR/Cas genome editing systems in thermophiles: Current status, associated challenges, and future perspectives.
    Le Y; Sun J
    Adv Appl Microbiol; 2022; 118():1-30. PubMed ID: 35461662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Smart Strategies for Precise Delivery of CRISPR/Cas9 in Genome Editing.
    Hasanzadeh A; Noori H; Jahandideh A; Haeri Moghaddam N; Kamrani Mousavi SM; Nourizadeh H; Saeedi S; Karimi M; Hamblin MR
    ACS Appl Bio Mater; 2022 Feb; 5(2):413-437. PubMed ID: 35040621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Next Generation Prokaryotic Engineering: The CRISPR-Cas Toolkit.
    Mougiakos I; Bosma EF; de Vos WM; van Kranenburg R; van der Oost J
    Trends Biotechnol; 2016 Jul; 34(7):575-587. PubMed ID: 26944793
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives.
    Dong W; Kantor B
    Viruses; 2021 Jul; 13(7):. PubMed ID: 34372494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.