These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 35686011)

  • 41. CRISPR/Cas systems: opportunities and challenges for crop breeding.
    Biswas S; Zhang D; Shi J
    Plant Cell Rep; 2021 Jun; 40(6):979-998. PubMed ID: 33977326
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome Editing for Sustainable Agriculture in Africa.
    Tripathi L; Dhugga KS; Ntui VO; Runo S; Syombua ED; Muiruri S; Wen Z; Tripathi JN
    Front Genome Ed; 2022; 4():876697. PubMed ID: 35647578
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development and Application of CRISPR/Cas in Microbial Biotechnology.
    Ding W; Zhang Y; Shi S
    Front Bioeng Biotechnol; 2020; 8():711. PubMed ID: 32695770
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mapping CRISPR-Cas9 public and commercial innovation using The Lens institutional toolkit.
    Jefferson OA; Lang S; Williams K; Koellhofer D; Ballagh A; Warren B; Schellberg B; Sharma R; Jefferson R
    Transgenic Res; 2021 Aug; 30(4):585-599. PubMed ID: 33721140
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome editing for crop improvement: Challenges and opportunities.
    Abdallah NA; Prakash CS; McHughen AG
    GM Crops Food; 2015; 6(4):183-205. PubMed ID: 26930114
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CRISPR-Based Genome Editing for Nutrient Enrichment in Crops: A Promising Approach Toward Global Food Security.
    Kumar D; Yadav A; Ahmad R; Dwivedi UN; Yadav K
    Front Genet; 2022; 13():932859. PubMed ID: 35910203
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [CRISPR/Cas-mediated DNA base editing technology and its application in biomedicine and agriculture].
    Yu C; Mo J; Zhao X; Li G; Zhang X
    Sheng Wu Gong Cheng Xue Bao; 2021 Sep; 37(9):3071-3087. PubMed ID: 34622618
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Towards CRISPR/Cas crops - bringing together genomics and genome editing.
    Scheben A; Wolter F; Batley J; Puchta H; Edwards D
    New Phytol; 2017 Nov; 216(3):682-698. PubMed ID: 28762506
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioinformatics Identification of Anti-CRISPR Loci by Using Homology, Guilt-by-Association, and CRISPR Self-Targeting Spacer Approaches.
    Yin Y; Yang B; Entwistle S
    mSystems; 2019 Sep; 4(5):. PubMed ID: 31506266
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Diversification of the CRISPR Toolbox: Applications of CRISPR-Cas Systems Beyond Genome Editing.
    Balderston S; Clouse G; Ripoll JJ; Pratt GK; Gasiunas G; Bock JO; Bennett EP; Aran K
    CRISPR J; 2021 Jun; 4(3):400-415. PubMed ID: 34152221
    [TBL] [Abstract][Full Text] [Related]  

  • 51. (Broken) Promises of Sustainable Food and Agriculture through New Biotechnologies: The CRISPR Case.
    Kuiken T; Barrangou R; Grieger K
    CRISPR J; 2021 Feb; 4(1):25-31. PubMed ID: 33570455
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evolution in crop improvement approaches and future prospects of molecular markers to CRISPR/Cas9 system.
    Dheer P; Rautela I; Sharma V; Dhiman M; Sharma A; Sharma N; Sharma MD
    Gene; 2020 Aug; 753():144795. PubMed ID: 32450202
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications.
    Molla KA; Yang Y
    Trends Biotechnol; 2019 Oct; 37(10):1121-1142. PubMed ID: 30995964
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome engineering in ophthalmology: Application of CRISPR/Cas to the treatment of eye disease.
    Hung SSC; McCaughey T; Swann O; Pébay A; Hewitt AW
    Prog Retin Eye Res; 2016 Jul; 53():1-20. PubMed ID: 27181583
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recent Advances in Genome-Engineering Strategies.
    Boti MA; Athanasopoulou K; Adamopoulos PG; Sideris DC; Scorilas A
    Genes (Basel); 2023 Jan; 14(1):. PubMed ID: 36672870
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A glance at genome editing with CRISPR-Cas9 technology.
    Barman A; Deb B; Chakraborty S
    Curr Genet; 2020 Jun; 66(3):447-462. PubMed ID: 31691023
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Revisiting CRISPR/Cas-mediated crop improvement: Special focus on nutrition.
    Kaul T; Sony SK; Verma R; Motelb KFA; Prakash AT; Eswaran M; Bharti J; Nehra M; Kaul R
    J Biosci; 2020; 45():. PubMed ID: 33361628
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CRISPR-Cas9 System for Genome Engineering of Photosynthetic Microalgae.
    Patel VK; Soni N; Prasad V; Sapre A; Dasgupta S; Bhadra B
    Mol Biotechnol; 2019 Aug; 61(8):541-561. PubMed ID: 31140149
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Overview of advances in CRISPR/deadCas9 technology and its applications in human diseases.
    Kanafi MM; Tavallaei M
    Gene; 2022 Jul; 830():146518. PubMed ID: 35447246
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing.
    Zhang X; Li T; Ou J; Huang J; Liang P
    Protein Cell; 2022 May; 13(5):316-335. PubMed ID: 33945139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.