These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35686036)

  • 1. Real-Time Optical Mapping of Contracting Cardiac Tissues With GPU-Accelerated Numerical Motion Tracking.
    Lebert J; Ravi N; Kensah G; Christoph J
    Front Cardiovasc Med; 2022; 9():787627. PubMed ID: 35686036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marker-Free Tracking for Motion Artifact Compensation and Deformation Measurements in Optical Mapping Videos of Contracting Hearts.
    Christoph J; Luther S
    Front Physiol; 2018; 9():1483. PubMed ID: 30450053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Resolution Optical Measurement of Cardiac Restitution, Contraction, and Fibrillation Dynamics in Beating vs. Blebbistatin-Uncoupled Isolated Rabbit Hearts.
    Kappadan V; Telele S; Uzelac I; Fenton F; Parlitz U; Luther S; Christoph J
    Front Physiol; 2020; 11():464. PubMed ID: 32528304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromechanical optical mapping.
    Christoph J; Schröder-Schetelig J; Luther S
    Prog Biophys Mol Biol; 2017 Nov; 130(Pt B):150-169. PubMed ID: 28947080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Mapping of Membrane Potential and Epicardial Deformation in Beating Hearts.
    Zhang H; Iijima K; Huang J; Walcott GP; Rogers JM
    Biophys J; 2016 Jul; 111(2):438-451. PubMed ID: 27463145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical mapping of contracting hearts.
    Kappadan V; Sohi A; Parlitz U; Luther S; Uzelac I; Fenton F; Peters NS; Christoph J; Ng FS
    J Physiol; 2023 Apr; 601(8):1353-1370. PubMed ID: 36866700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion estimation in cardiac fluorescence imaging with scale-space landmarks and optical flow: a comparative study.
    Rodriguez MP; Nygren A
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):774-82. PubMed ID: 25350913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical mapping of cardiac electromechanics in beating in vivo hearts.
    Zhang H; Patton HN; Wood GA; Yan P; Loew LM; Acker CD; Walcott GP; Rogers JM
    Biophys J; 2023 Nov; 122(21):4207-4219. PubMed ID: 37775969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale neural circuit mapping data analysis accelerated with the graphical processing unit (GPU).
    Shi Y; Veidenbaum AV; Nicolau A; Xu X
    J Neurosci Methods; 2015 Jan; 239():1-10. PubMed ID: 25277633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models.
    Lee P; Quintanilla JG; Alfonso-Almazán JM; Galán-Arriola C; Yan P; Sánchez-González J; Pérez-Castellano N; Pérez-Villacastín J; Ibañez B; Loew LM; Filgueiras-Rama D
    Cardiovasc Res; 2019 Sep; 115(11):1659-1671. PubMed ID: 30753358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KairoSight-3.0: A validated optical mapping software to characterize cardiac electrophysiology, excitation-contraction coupling, and alternans.
    Haq KT; Roberts A; Berk F; Allen S; Swift LM; Posnack NG
    J Mol Cell Cardiol Plus; 2023 Sep; 5():. PubMed ID: 37786807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image-based motion correction for optical mapping of cardiac electrical activity.
    Khwaounjoo P; Rutherford SL; Svrcek M; LeGrice IJ; Trew ML; Smaill BH
    Ann Biomed Eng; 2015 May; 43(5):1235-46. PubMed ID: 25384833
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Haq KT; Roberts A; Berk F; Allen S; Swift LM; Posnack NG
    bioRxiv; 2023 May; ():. PubMed ID: 37205349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GPU acceleration of optical mapping algorithm for cardiac electrophysiology.
    Meng P; Irturk A; Kastner R; McCulloch A; Omens J; Wright A
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1558-61. PubMed ID: 23366201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerating 3-D GPU-based Motion Tracking for Ultrasound Strain Elastography Using Sum-Tables: Analysis and Initial Results.
    Peng B; Luo S; Xu Z; Jiang J
    Appl Sci (Basel); 2019 May; 9(10):. PubMed ID: 31372306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High resolution optical mapping of cardiac action potentials in freely beating rabbit hearts.
    Inagaki M; Hidaka I; Aiba T; Tatewaki T; Sunagawa K; Sugimachi M
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():3578-80. PubMed ID: 17271064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GPU-accelerated nonparametric kinetic analysis of DCE-MRI data from glioblastoma patients treated with bevacizumab.
    Hsu YH; Ferl GZ; Ng CM
    Magn Reson Imaging; 2013 May; 31(4):618-23. PubMed ID: 23200680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical mapping of Langendorff-perfused rat hearts.
    Sill B; Hammer PE; Cowan DB
    J Vis Exp; 2009 Aug; (30):. PubMed ID: 19684567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time parallel 3D multiple particle tracking with single molecule centrifugal force microscopy.
    Kou L; Jin L; Lei H; Hu C; Li H; Hu X; Hu X
    J Microsc; 2019 Mar; 273(3):178-188. PubMed ID: 30489640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.