BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35686343)

  • 1. Probing the Structural Details of Chitin Nanocrystal-Water Interfaces by Three-Dimensional Atomic Force Microscopy.
    Yurtsever A; Wang PX; Priante F; Morais Jaques Y; Miyata K; MacLachlan MJ; Foster AS; Fukuma T
    Small Methods; 2022 Sep; 6(9):e2200320. PubMed ID: 35686343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular insights on the crystalline cellulose-water interfaces via three-dimensional atomic force microscopy.
    Yurtsever A; Wang PX; Priante F; Morais Jaques Y; Miyazawa K; MacLachlan MJ; Foster AS; Fukuma T
    Sci Adv; 2022 Oct; 8(41):eabq0160. PubMed ID: 36240279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic- and Molecular-Resolution Mapping of Solid-Liquid Interfaces by 3D Atomic Force Microscopy.
    Fukuma T; Garcia R
    ACS Nano; 2018 Dec; 12(12):11785-11797. PubMed ID: 30422619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and orientation of interfacial water determine atomic force microscopy results: insights from molecular dynamics simulations.
    Argyris D; Ashby PD; Striolo A
    ACS Nano; 2011 Mar; 5(3):2215-23. PubMed ID: 21375261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Dynamics Simulation of Atomic Force Microscopy at the Water-Muscovite Interface: Hydration Layer Structure and Force Analysis.
    Kobayashi K; Liang Y; Amano K; Murata S; Matsuoka T; Takahashi S; Nishi N; Sakka T
    Langmuir; 2016 Apr; 32(15):3608-16. PubMed ID: 27018633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic force microscopy as an imaging tool to study the bio/nonbio complexes.
    Bednarikova Z; Gazova Z; Valle F; Bystrenova E
    J Microsc; 2020 Dec; 280(3):241-251. PubMed ID: 32519330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subnanometer-scale imaging of nanobio-interfaces by frequency modulation atomic force microscopy.
    Fukuma T
    Biochem Soc Trans; 2020 Aug; 48(4):1675-1682. PubMed ID: 32779720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolving Point Defects in the Hydration Structure of Calcite (10.4) with Three-Dimensional Atomic Force Microscopy.
    Söngen H; Reischl B; Miyata K; Bechstein R; Raiteri P; Rohl AL; Gale JD; Fukuma T; Kühnle A
    Phys Rev Lett; 2018 Mar; 120(11):116101. PubMed ID: 29601750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional ordering of water molecules reflecting hydroxyl groups on sapphire (001) and α-quartz (100) surfaces.
    Nagai S; Urata S; Suga K; Fukuma T; Hayashi Y; Miyazawa K
    Nanoscale; 2023 Aug; 15(32):13262-13271. PubMed ID: 37539559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structured Water Molecules on Membrane Proteins Resolved by Atomic Force Microscopy.
    Ido S; Kobayashi K; Oyabu N; Hirata Y; Matsushige K; Yamada H
    Nano Lett; 2022 Mar; 22(6):2391-2397. PubMed ID: 35274954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging three-dimensional surface objects with submolecular resolution by atomic force microscopy.
    Moreno C; Stetsovych O; Shimizu TK; Custance O
    Nano Lett; 2015 Apr; 15(4):2257-62. PubMed ID: 25756297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomically resolved interfacial water structures on crystalline hydrophilic and hydrophobic surfaces.
    Uhlig MR; Benaglia S; Thakkar R; Comer J; Garcia R
    Nanoscale; 2021 Mar; 13(10):5275-5283. PubMed ID: 33624666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial distribution of lipid headgroups and water molecules at membrane/water interfaces visualized by three-dimensional scanning force microscopy.
    Asakawa H; Yoshioka S; Nishimura K; Fukuma T
    ACS Nano; 2012 Oct; 6(10):9013-20. PubMed ID: 23013290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of hydrogen bonds on the single-chain mechanics of chitin.
    Qian L; Guo X; Zhang K; Yu M
    Phys Chem Chem Phys; 2022 Oct; 24(39):24535-24541. PubMed ID: 36193805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy.
    Zhang T; Zheng Y; Cosgrove DJ
    Plant J; 2016 Jan; 85(2):179-92. PubMed ID: 26676644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directly probing the effects of ions on hydration forces at interfaces.
    Kilpatrick JI; Loh SH; Jarvis SP
    J Am Chem Soc; 2013 Feb; 135(7):2628-34. PubMed ID: 23398487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Submolecular Insights into Interfacial Water by Hydrogen-Sensitive Scanning Probe Microscopy.
    Guo J; Jiang Y
    Acc Chem Res; 2022 Jun; 55(12):1680-1692. PubMed ID: 35678704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water distribution at solid/liquid interfaces visualized by frequency modulation atomic force microscopy.
    Fukuma T
    Sci Technol Adv Mater; 2010 Jun; 11(3):033003. PubMed ID: 27877337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic-Scale 3D Local Hydration Structures Influenced by Water-Restricting Dimensions.
    Umeda K; Kobayashi K; Minato T; Yamada H
    Langmuir; 2018 Aug; 34(31):9114-9121. PubMed ID: 29985633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.