BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35686739)

  • 1. Cell-Responsive Shape Memory Polymers.
    Chen J; Hamilton LE; Mather PT; Henderson JH
    ACS Biomater Sci Eng; 2022 Jul; 8(7):2960-2969. PubMed ID: 35686739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatically triggered shape memory polymers.
    Buffington SL; Paul JE; Ali MM; Macios MM; Mather PT; Henderson JH
    Acta Biomater; 2019 Jan; 84():88-97. PubMed ID: 30471473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermally and Photothermally Triggered Cytocompatible Triple-Shape-Memory Polymer Based on a Graphene Oxide-Containing Poly(ε-caprolactone) and Acrylate Composite.
    Chen J; Sun S; Macios MM; Oguntade E; Narkar AR; Mather PT; Henderson JH
    ACS Appl Mater Interfaces; 2023 Oct; 15(44):50962-72. PubMed ID: 37902447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.
    Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX
    Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.
    Boire TC; Gupta MK; Zachman AL; Lee SH; Balikov DA; Kim K; Bellan LM; Sung HJ
    Acta Biomater; 2015 Sep; 24():53-63. PubMed ID: 26072363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape memory thermoplastic polyurethane (TPU)/poly(ε-caprolactone) (PCL) blends as self-knotting sutures.
    Jing X; Mi HY; Huang HX; Turng LS
    J Mech Behav Biomed Mater; 2016 Dec; 64():94-103. PubMed ID: 27490212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape-Memory Polymers Hallmarks and Their Biomedical Applications in the Form of Nanofibers.
    Pisani S; Genta I; Modena T; Dorati R; Benazzo M; Conti B
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reprint of: Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.
    Boire TC; Gupta MK; Zachman AL; Lee SH; Balikov DA; Kim K; Bellan LM; Sung HJ
    Acta Biomater; 2016 Apr; 34():73-83. PubMed ID: 27018333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyurethane Microparticles for Stimuli Response and Reduced Oxidative Degradation in Highly Porous Shape Memory Polymers.
    Weems AC; Li W; Maitland DJ; Calle LM
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):32998-33009. PubMed ID: 30184426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and in vitro evaluation of electrospun shape memory polyurethanes for self-fitting tissue engineering grafts and drug delivery systems.
    Bil M; Kijeńska-Gawrońska E; Głodkowska-Mrówka E; Manda-Handzlik A; Mrówka P
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110675. PubMed ID: 32204102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent-free synthesis of biostable segmented polyurethane shape memory polymers for biomedical applications.
    Ramezani M; Getya D; Gitsov I; Monroe MBB
    J Mater Chem B; 2024 Jan; 12(5):1217-1231. PubMed ID: 38168979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method for preparation, programming, and characterization of miniaturized particulate shape-memory polymer matrices.
    Wischke C; Lendlein A
    Langmuir; 2014 Mar; 30(10):2820-7. PubMed ID: 24564390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PCL-based Shape Memory Polymers with Variable PDMS Soft Segment Lengths.
    Zhang D; Giese ML; Prukop SL; Grunlan MA
    J Polym Sci A Polym Chem; 2011 Feb; 49(3):754-761. PubMed ID: 22904597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Printing Parameters of Fused Filament Fabrication Affect Key Properties of Four-Dimensional Printed Shape-Memory Polymers.
    Pieri K; Felix BM; Zhang T; Soman P; Henderson JH
    3D Print Addit Manuf; 2023 Apr; 10(2):279-288. PubMed ID: 37123528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous inorganic-organic shape memory polymers.
    Zhang D; Burkes WL; Schoener CA; Grunlan MA
    Polymer (Guildf); 2012 Jun; 53(14):2935-2941. PubMed ID: 22956854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-Triggered Stiffening of Shape-Memory Polyurethanes Composed of Hard Backbone Dangling PEG Soft Segments.
    Liu W; Wang A; Yang R; Wu H; Shao S; Chen J; Ma Y; Li Z; Wang Y; He X; Li J; Tan H; Fu Q
    Adv Mater; 2022 Nov; 34(46):e2201914. PubMed ID: 35502474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smart Shape-Memory Polymeric String for the Contraction of Blood Vessels in Fetal Surgery of Sacrococcygeal Teratoma.
    Fulati A; Uto K; Iwanaga M; Watanabe M; Ebara M
    Adv Healthc Mater; 2022 Jul; 11(13):e2200050. PubMed ID: 35385611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic-organic shape memory polymer (SMP) foams with highly tunable properties.
    Zhang D; Petersen KM; Grunlan MA
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):186-91. PubMed ID: 23227875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smart scaffolds: shape memory polymers (SMPs) in tissue engineering.
    Pfau MR; Grunlan MA
    J Mater Chem B; 2021 Jun; 9(21):4287-4297. PubMed ID: 33969849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocomposite electrospun fibers of poly(ε-caprolactone)/bioactive glass with shape memory properties.
    Liverani L; Liguori A; Zezza P; Gualandi C; Toselli M; Boccaccini AR; Focarete ML
    Bioact Mater; 2022 May; 11():230-239. PubMed ID: 34977428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.