These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35686946)

  • 1. Flexible lead-free piezoelectric arrays for high-efficiency wireless ultrasonic energy transfer and communication.
    Jiang L; Wu B; Wei X; Lv X; Xue H; Lu G; Zeng Y; Xing J; Wu W; Wu J
    Mater Horiz; 2022 Aug; 9(8):2180-2190. PubMed ID: 35686946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ultrasound-induced wireless power supply based on AlN piezoelectric micromachined ultrasonic transducers.
    Rong Z; Zhang M; Ning Y; Pang W
    Sci Rep; 2022 Sep; 12(1):16174. PubMed ID: 36171230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible, Wearable Wireless-Charging Power System Incorporating Piezo-Ultrasonic Arrays and MXene-Based Solid-State Supercapacitors.
    Zhou Q; Zhu C; Xue H; Jiang L; Wu J
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):35268-35278. PubMed ID: 38916408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Method and Analysis to Enable Efficient Piezoelectric Transducer-Based Ultrasonic Power and Data Links for Miniaturized Implantable Medical Devices.
    Sonmezoglu S; Darvishian A; Shen K; Bustamante MJ; Kandala A; Maharbiz MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Nov; 68(11):3362-3370. PubMed ID: 34197320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wireless Ultrasonic Communication for Biomedical Injectable Implantable Device.
    Jaafar B; Soltan A; Neasham J; Degenaar P
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4024-4027. PubMed ID: 31946754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices.
    Shi Q; Wang T; Lee C
    Sci Rep; 2016 Apr; 6():24946. PubMed ID: 27112530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensating for Tissue Changes in an Ultrasonic Power Link for Implanted Medical Devices.
    Vihvelin H; Leadbetter J; Bance M; Brown JA; Adamson RB
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):404-11. PubMed ID: 26054073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-Inorganic Flexible (K, Na)NbO
    Cheng YY; Liu L; Huang Y; Shu L; Liu YX; Wei L; Li JF
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39633-39640. PubMed ID: 34382760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimally invasive power sources for implantable electronics.
    Xu M; Liu Y; Yang K; Li S; Wang M; Wang J; Yang D; Shkunov M; Silva SRP; Castro FA; Zhao Y
    Exploration (Beijing); 2024 Feb; 4(1):20220106. PubMed ID: 38854488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromechanical and biological evaluations of 0.94Bi
    Hall TAG; Theodoridis K; Kechagias S; Kohli N; Denonville C; Rørvik PM; Cegla F; van Arkel RJ
    Biomater Adv; 2023 Nov; 154():213590. PubMed ID: 37598437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound-Powered Implants: A Critical Review of Piezoelectric Material Selection and Applications.
    Turner BL; Senevirathne S; Kilgour K; McArt D; Biggs M; Menegatti S; Daniele MA
    Adv Healthc Mater; 2021 Sep; 10(17):e2100986. PubMed ID: 34235886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible piezoelectric ultrasonic energy harvester array for bio-implantable wireless generator.
    Jiang L; Yang Y; Chen R; Lu G; Li R; Li D; Humayun MS; Shung KK; Zhu J; Chen Y; Zhou Q
    Nano Energy; 2019 Feb; 56():216-224. PubMed ID: 31475091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester.
    Gupta MK; Kim SW; Kumar B
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1766-73. PubMed ID: 26735739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous backward data transmission and power harvesting in an ultrasonic transcutaneous energy transfer link employing acoustically dependent electric impedance modulation.
    Ozeri S; Shmilovitz D
    Ultrasonics; 2014 Sep; 54(7):1929-37. PubMed ID: 24861424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Materials Strategies and Device Architectures of Emerging Power Supply Devices for Implantable Bioelectronics.
    Huang X; Wang L; Wang H; Zhang B; Wang X; Stening RYZ; Sheng X; Yin L
    Small; 2020 Apr; 16(15):e1902827. PubMed ID: 31513333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review.
    Bocan KN; Sejdić E
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26999154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Textured Lead-Free Piezoelectric Ceramics for Flexible Energy Harvesters.
    Purusothaman Y; Leng H; Nanda A; Levine I; Priya S
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6584-6593. PubMed ID: 36692991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive control of the power transferred to an implanted device by an ultrasonic transcutaneous energy transfer link.
    Shmilovitz D; Ozeri S; Wang CC; Spivak B
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):995-1004. PubMed ID: 24013825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wireless Power Transfer and Telemetry for Implantable Bioelectronics.
    Yoo S; Lee J; Joo H; Sunwoo SH; Kim S; Kim DH
    Adv Healthc Mater; 2021 Sep; 10(17):e2100614. PubMed ID: 34075721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implantable Cardiac Kirigami-Inspired Lead-Based Energy Harvester Fabricated by Enhanced Piezoelectric Composite Film.
    Xu Z; Jin C; Cabe A; Escobedo D; Gruslova A; Jenney S; Closson AB; Dong L; Chen Z; Feldman MD; Zhang JXJ
    Adv Healthc Mater; 2021 Apr; 10(8):e2002100. PubMed ID: 33434407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.