These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35686946)

  • 21. Implantable Cardiac Kirigami-Inspired Lead-Based Energy Harvester Fabricated by Enhanced Piezoelectric Composite Film.
    Xu Z; Jin C; Cabe A; Escobedo D; Gruslova A; Jenney S; Closson AB; Dong L; Chen Z; Feldman MD; Zhang JXJ
    Adv Healthc Mater; 2021 Apr; 10(8):e2002100. PubMed ID: 33434407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Advances of Energy Solutions for Implantable Bioelectronics.
    Sheng H; Zhang X; Liang J; Shao M; Xie E; Yu C; Lan W
    Adv Healthc Mater; 2021 Sep; 10(17):e2100199. PubMed ID: 33930254
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrasonic transcutaneous energy transfer for powering implanted devices.
    Ozeri S; Shmilovitz D
    Ultrasonics; 2010 May; 50(6):556-66. PubMed ID: 20031183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wireless Power Transmission for Implantable Medical Devices Using Focused Ultrasound and a Miniaturized 1-3 Piezoelectric Composite Receiving Transducer.
    Yi X; Zheng W; Cao H; Wang S; Feng X; Yang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Dec; 68(12):3592-3598. PubMed ID: 34357865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fundamental study of an electric power transmission system for implanted medical devices using magnetic and ultrasonic energy.
    Suzuki SN; Katane T; Saito O
    J Artif Organs; 2003; 6(2):145-8. PubMed ID: 14598116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Implantable Energy-Harvesting Devices.
    Shi B; Li Z; Fan Y
    Adv Mater; 2018 Nov; 30(44):e1801511. PubMed ID: 30043422
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An ultrasonically controlled switching system for power management in implantable devices.
    Zhou J; Kim A; Ziaie B
    Biomed Microdevices; 2018 May; 20(2):42. PubMed ID: 29789965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. End-to-End Design of Efficient Ultrasonic Power Links for Scaling Towards Submillimeter Implantable Receivers.
    Chang TC; Weber MJ; Charthad J; Baltsavias S; Arbabian A
    IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1100-1111. PubMed ID: 30235147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multichannel Piezo-Ultrasound Implant with Hybrid Waterborne Acoustic Metastructure for Selective Wireless Energy Transfer at Megahertz Frequencies.
    Jiang L; Lu G; Yang Y; Xu Y; Qi F; Li J; Zhu B; Chen Y
    Adv Mater; 2021 Nov; 33(44):e2104251. PubMed ID: 34480501
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Model validation of untethered, ultrasonic neural dust motes for cortical recording.
    Seo D; Carmena JM; Rabaey JM; Maharbiz MM; Alon E
    J Neurosci Methods; 2015 Apr; 244():114-22. PubMed ID: 25109901
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inductive and ultrasonic multi-tier interface for low-power, deeply implantable medical devices.
    Sanni A; Vilches A; Toumazou C
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):297-308. PubMed ID: 23853174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Porosity Modulated High-Performance Piezoelectric Nanogenerator Based on Organic/Inorganic Nanomaterials for Self-Powered Structural Health Monitoring.
    Rana MM; Khan AA; Huang G; Mei N; Saritas R; Wen B; Zhang S; Voss P; Abdel-Rahman E; Leonenko Z; Islam S; Ban D
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47503-47512. PubMed ID: 32969216
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Eco-Friendly Highly Sensitive Transducers Based on a New KNN-NTK-FM Lead-Free Piezoelectric Ceramic for High-Frequency Biomedical Ultrasonic Imaging Applications.
    Chen R; Jiang L; Zhang T; Matsuoka T; Yamazaki M; Qian X; Lu G; Safari A; Zhu J; Shung KK; Ma T; Zhou Q
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1580-1587. PubMed ID: 30452346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Omnidirectional Ultrasonic Powering for Millimeter-Scale Implantable Devices.
    Song SH; Kim A; Ziaie B
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2717-23. PubMed ID: 26080376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Humidity Sustainable Hydrophobic Poly(vinylidene fluoride)-Carbon Nanotubes Foam Based Piezoelectric Nanogenerator.
    Badatya S; Bharti DK; Sathish N; Srivastava AK; Gupta MK
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27245-27254. PubMed ID: 34096257
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A flexible super-capacitive solid-state power supply for miniature implantable medical devices.
    Meng C; Gall OZ; Irazoqui PP
    Biomed Microdevices; 2013 Dec; 15(6):973-83. PubMed ID: 23832644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Piezoelectric polymer multilayer on flexible substrate for energy harvesting.
    Zhang L; Oh SR; Wong TC; Tan CY; Yao K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):2013-20. PubMed ID: 24658732
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tissue-Matchable and Implantable Batteries Toward Biomedical Applications.
    Yan B; Zhao Y; Peng H
    Small Methods; 2023 Oct; 7(10):e2300501. PubMed ID: 37469190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Patchable and Implantable 2D Nanogenerator.
    Han SA; Lee JH; Seung W; Lee J; Kim SW; Kim JH
    Small; 2021 Mar; 17(9):e1903519. PubMed ID: 31588681
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of Tunable Ultrasonic Receivers for Efficient Powering of Implantable Medical Devices With Reconfigurable Power Loads.
    Chang TC; Weber MJ; Wang ML; Charthad J; Khuri-Yakub BP; Arbabian A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Oct; 63(10):1554-1562. PubMed ID: 27623580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.