BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35687136)

  • 1. Comparison of utility of deep learning reconstruction on 3D MRCPs obtained with three different k-space data acquisitions in patients with IPMN.
    Matsuyama T; Ohno Y; Yamamoto K; Ikedo M; Yui M; Furuta M; Fujisawa R; Hanamatsu S; Nagata H; Ueda T; Ikeda H; Takeda S; Iwase A; Fukuba T; Akamatsu H; Hanaoka R; Kato R; Murayama K; Toyama H
    Eur Radiol; 2022 Oct; 32(10):6658-6667. PubMed ID: 35687136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MR imaging for shoulder diseases: Effect of compressed sensing and deep learning reconstruction on examination time and imaging quality compared with that of parallel imaging.
    Obama Y; Ohno Y; Yamamoto K; Ikedo M; Yui M; Hanamatsu S; Ueda T; Ikeda H; Murayama K; Toyama H
    Magn Reson Imaging; 2022 Dec; 94():56-63. PubMed ID: 35934207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based reconstruction and 3D hybrid profile order technique for MRCP at 3T: evaluation of image quality and acquisition time.
    Shiraishi K; Nakaura T; Uetani H; Nagayama Y; Kidoh M; Kobayashi N; Morita K; Yamahita Y; Tanaka Y; Baba H; Hirai T
    Eur Radiol; 2023 Nov; 33(11):7585-7594. PubMed ID: 37178197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid 3D breath-hold MR cholangiopancreatography using deep learning-constrained compressed sensing reconstruction.
    Zhang Y; Peng W; Xiao Y; Ming Y; Ma K; Hu S; Zeng W; Zeng L; Liang Z; Zhang X; Xia C; Li Z
    Eur Radiol; 2023 Apr; 33(4):2500-2509. PubMed ID: 36355200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic resonance cholangiopancreatography with compressed sensing at 1.5 T: clinical application for the evaluation of branch duct IPMN of the pancreas.
    Henninger B; Steurer M; Plaikner M; Weiland E; Jaschke W; Kremser C
    Eur Radiol; 2020 Nov; 30(11):6014-6021. PubMed ID: 32556465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Another dimension in magnetic resonance cholangiopancreatography: comparison of 2- and 3-dimensional magnetic resonance cholangiopancreatography for the evaluation of intraductal papillary mucinous neoplasm of the pancreas.
    Yoon LS; Catalano OA; Fritz S; Ferrone CR; Hahn PF; Sahani DV
    J Comput Assist Tomogr; 2009; 33(3):363-8. PubMed ID: 19478628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality.
    Lee KL; Kessler DA; Dezonie S; Chishaya W; Shepherd C; Carmo B; Graves MJ; Barrett T
    Eur J Radiol; 2023 Sep; 166():111017. PubMed ID: 37541181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast T2-Weighted Imaging With Deep Learning-Based Reconstruction: Evaluation of Image Quality and Diagnostic Performance in Patients Undergoing Radical Prostatectomy.
    Park JC; Park KJ; Park MY; Kim MH; Kim JK
    J Magn Reson Imaging; 2022 Jun; 55(6):1735-1744. PubMed ID: 34773449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Reconstruction to Improve the Quality of MR Imaging: Evaluating the Best Sequence for T-category Assessment in Non-small Cell Lung Cancer Patients.
    Takenaka D; Ozawa Y; Yamamoto K; Shinohara M; Ikedo M; Yui M; Oshima Y; Hamabuchi N; Nagata H; Ueda T; Ikeda H; Iwase A; Yoshikawa T; Toyama H; Ohno Y
    Magn Reson Med Sci; 2023 Sep; ():. PubMed ID: 37661425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized 3D brachial plexus MR neurography using deep learning reconstruction.
    Sneag DB; Queler SC; Campbell G; Colucci PG; Lin J; Lin Y; Wen Y; Li Q; Tan ET
    Skeletal Radiol; 2024 Apr; 53(4):779-789. PubMed ID: 37914895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compressed sensing with deep learning reconstruction: Improving capability of gadolinium-EOB-enhanced 3D T1WI.
    Nagata H; Ohno Y; Yoshikawa T; Yamamoto K; Shinohara M; Ikedo M; Yui M; Matsuyama T; Takahashi T; Bando S; Furuta M; Ueda T; Ozawa Y; Toyama H
    Magn Reson Imaging; 2024 May; 108():67-76. PubMed ID: 38309378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep-learning-based reconstruction of T2-weighted magnetic resonance imaging of the prostate accelerated by compressed sensing provides improved image quality at half the acquisition time.
    Jurka M; Macova I; Wagnerova M; Capoun O; Jakubicek R; Ourednicek P; Lambert L; Burgetova A
    Quant Imaging Med Surg; 2024 May; 14(5):3534-3543. PubMed ID: 38720867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast high-quality MRI protocol of the lumbar spine with deep learning-based algorithm: an image quality and scanning time comparison with standard protocol.
    Zerunian M; Pucciarelli F; Caruso D; De Santis D; Polici M; Masci B; Nacci I; Del Gaudio A; Argento G; Redler A; Laghi A
    Skeletal Radiol; 2024 Jan; 53(1):151-159. PubMed ID: 37369725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the impact of super-resolution deep learning on MR angiography image quality.
    Hokamura M; Uetani H; Nakaura T; Matsuo K; Morita K; Nagayama Y; Kidoh M; Yamashita Y; Ueda M; Mukasa A; Hirai T
    Neuroradiology; 2024 Feb; 66(2):217-226. PubMed ID: 38148334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of high-resolution magnetic resonance imaging of the liver using deep learning reconstruction based on the deep learning denoising technique.
    Tanabe M; Higashi M; Yonezawa T; Yamaguchi T; Iida E; Furukawa M; Okada M; Shinoda K; Ito K
    Magn Reson Imaging; 2021 Jul; 80():121-126. PubMed ID: 33971240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning Reconstruction of Diffusion-weighted MRI Improves Image Quality for Prostatic Imaging.
    Ueda T; Ohno Y; Yamamoto K; Murayama K; Ikedo M; Yui M; Hanamatsu S; Tanaka Y; Obama Y; Ikeda H; Toyama H
    Radiology; 2022 May; 303(2):373-381. PubMed ID: 35103536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved image quality in contrast-enhanced 3D-T1 weighted sequence by compressed sensing-based deep-learning reconstruction for the evaluation of head and neck.
    Fujima N; Nakagawa J; Ikebe Y; Kameda H; Harada T; Shimizu Y; Tsushima N; Kano S; Homma A; Kwon J; Yoneyama M; Kudo K
    Magn Reson Imaging; 2024 May; 108():111-115. PubMed ID: 38340971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of Deep Learning-based Contrast-enhanced CT Image Reconstruction on the Image Quality of the Biliary System].
    Wang ST; Xu J; Wang X; Wang Y; Xue HD; Jin ZY
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2022 Aug; 44(4):614-620. PubMed ID: 36065694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A preliminary study of deep learning-based reconstruction specialized for denoising in high-frequency domain: usefulness in high-resolution three-dimensional magnetic resonance cisternography of the cerebellopontine angle.
    Uetani H; Nakaura T; Kitajima M; Yamashita Y; Hamasaki T; Tateishi M; Morita K; Sasao A; Oda S; Ikeda O; Yamashita Y
    Neuroradiology; 2021 Jan; 63(1):63-71. PubMed ID: 32794075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of 3D Breath-Hold MR Cholangiopancreatography with a Spatially Selective Radiofrequency Excitation Pulse: Prospective Comparison with Parallel Imaging Technique and Compressed Sensing Method.
    Chen Z; Xue Y; Wu Y; Duan Q; Zheng E; He Y; Li G; Song Y; Sun B
    Acad Radiol; 2022 Dec; 29(12):e289-e295. PubMed ID: 35370045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.