These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 35687240)

  • 1. Implementing Multi-Enzyme Biocatalytic Systems Using Nanoparticle Scaffolds.
    Breger JC; Ellis GA; Walper SA; Susumu K; Medintz IL
    Methods Mol Biol; 2022; 2487():227-262. PubMed ID: 35687240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring Enzymatic Proteolysis Using Either Enzyme- or Substrate-Bioconjugated Quantum Dots.
    Díaz SA; Breger JC; Medintz IL
    Methods Enzymol; 2016; 571():19-54. PubMed ID: 27112393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing Coupled Enzymatic Activity by Colocalization on Nanoparticle Surfaces: Kinetic Evidence for Directed Channeling of Intermediates.
    Vranish JN; Ancona MG; Oh E; Susumu K; Lasarte Aragonés G; Breger JC; Walper SA; Medintz IL
    ACS Nano; 2018 Aug; 12(8):7911-7926. PubMed ID: 30044604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self assembling nanoparticle enzyme clusters provide access to substrate channeling in multienzymatic cascades.
    Breger JC; Vranish JN; Oh E; Stewart MH; Susumu K; Lasarte-Aragonés G; Ellis GA; Walper SA; Díaz SA; Hooe SL; Klein WP; Thakur M; Ancona MG; Medintz IL
    Nat Commun; 2023 Mar; 14(1):1757. PubMed ID: 36990995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing the conversion of phosphoenolpyruvate to lactate by enzymatic channeling with mixed nanoparticle display.
    Hooe SL; Green CM; Susumu K; Stewart MH; Breger JC; Medintz IL
    Cell Rep Methods; 2024 May; 4(5):100764. PubMed ID: 38714198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding How Nanoparticle Attachment Enhances Phosphotriesterase Kinetic Efficiency.
    Breger JC; Ancona MG; Walper SA; Oh E; Susumu K; Stewart MH; Deschamps JR; Medintz IL
    ACS Nano; 2015 Aug; 9(8):8491-503. PubMed ID: 26230391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme assembly on nanoparticle scaffolds enhances cofactor recycling and improves coupled reaction kinetics.
    Breger JC; Goldman ER; Susumu K; Oh E; Green CM; Hooe SL; Thakur M; Medintz IL; Ellis GA
    Nanoscale; 2023 Jun; 15(23):10159-10175. PubMed ID: 37272342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multienzymatic Cascades and Nanomaterial Scaffolding-A Potential Way Forward for the Efficient Biosynthesis of Novel Chemical Products.
    Hooe SL; Smith AD; Dean SN; Breger JC; Ellis GA; Medintz IL
    Adv Mater; 2024 Feb; 36(5):e2309963. PubMed ID: 37944537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing the activity of immobilized enzymes with nanoparticle conjugation.
    Ding S; Cargill AA; Medintz IL; Claussen JC
    Curr Opin Biotechnol; 2015 Aug; 34():242-50. PubMed ID: 25957941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cascade biocatalysis by multienzyme-nanoparticle assemblies.
    Kang W; Liu J; Wang J; Nie Y; Guo Z; Xia J
    Bioconjug Chem; 2014 Aug; 25(8):1387-94. PubMed ID: 25020147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing coupled enzymatic activity by conjugating one enzyme to a nanoparticle.
    Vranish JN; Ancona MG; Oh E; Susumu K; Medintz IL
    Nanoscale; 2017 Apr; 9(16):5172-5187. PubMed ID: 28393943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle-enzyme hybrid systems for nanobiotechnology.
    Willner I; Basnar B; Willner B
    FEBS J; 2007 Jan; 274(2):302-9. PubMed ID: 17181543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocatalysis - Key enabling tools from biocatalytic one-step and multi-step reactions to biocatalytic total synthesis.
    Wohlgemuth R
    N Biotechnol; 2021 Jan; 60():113-123. PubMed ID: 33045418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum dot display enhances activity of a phosphotriesterase trimer.
    Breger JC; Walper SA; Oh E; Susumu K; Stewart MH; Deschamps JR; Medintz IL
    Chem Commun (Camb); 2015 Apr; 51(29):6403-6. PubMed ID: 25764989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trends in the development of innovative nanobiocatalysts and their application in biocatalytic transformations.
    Gkantzou E; Chatzikonstantinou AV; Fotiadou R; Giannakopoulou A; Patila M; Stamatis H
    Biotechnol Adv; 2021 Nov; 51():107738. PubMed ID: 33775799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tools and strategies for constructing cell-free enzyme pathways.
    Petroll K; Kopp D; Care A; Bergquist PL; Sunna A
    Biotechnol Adv; 2019; 37(1):91-108. PubMed ID: 30521853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field.
    Kosionis SG; Terzis AF; Sadeghi SM; Paspalakis E
    J Phys Condens Matter; 2013 Jan; 25(4):045304. PubMed ID: 23257986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme Shielding in an Enzyme-thin and Soft Organosilica Layer.
    Correro MR; Moridi N; Schützinger H; Sykora S; Ammann EM; Peters EH; Dudal Y; Corvini PF; Shahgaldian P
    Angew Chem Int Ed Engl; 2016 May; 55(21):6285-9. PubMed ID: 27062137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting kallikrein proteolytic activity with peptide-quantum dot nanosensors.
    Breger JC; Sapsford KE; Ganek J; Susumu K; Stewart MH; Medintz IL
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11529-35. PubMed ID: 25003700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances and opportunities for the design of self-sufficient and spatially organized cell-free biocatalytic systems.
    Schmid-Dannert C; López-Gallego F
    Curr Opin Chem Biol; 2019 Apr; 49():97-104. PubMed ID: 30551093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.