These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 35687513)
1. Accounting for Heteroskedasticity Resulting from Between-Group Differences in Multilevel Models. Huang FL; Wiedermann W; Zhang B Multivariate Behav Res; 2023; 58(3):637-657. PubMed ID: 35687513 [TBL] [Abstract][Full Text] [Related]
2. A randomization test wrapper for synthesizing single-case experiments using multilevel models: A Monte Carlo simulation study. Michiels B; Tanious R; De TK; Onghena P Behav Res Methods; 2020 Apr; 52(2):654-666. PubMed ID: 31270794 [TBL] [Abstract][Full Text] [Related]
3. Evaluating two small-sample corrections for fixed-effects standard errors and inferences in multilevel models with heteroscedastic, unbalanced, clustered data. Zhang Y; Lai MHC Behav Res Methods; 2024 Sep; 56(6):5930-5946. PubMed ID: 38321272 [TBL] [Abstract][Full Text] [Related]
4. Effect Partitioning in Cross-Sectionally Clustered Data Without Multilevel Models. McNeish D Multivariate Behav Res; 2019; 54(6):906-925. PubMed ID: 31021178 [TBL] [Abstract][Full Text] [Related]
5. Effects of Modeling the Heterogeneity on Inferences Drawn from Multilevel Designs. Vallejo G; Fernández P; Cuesta M; Livacic-Rojas PE Multivariate Behav Res; 2015; 50(1):75-90. PubMed ID: 26609744 [TBL] [Abstract][Full Text] [Related]
6. Using cluster-robust standard errors when analyzing group-randomized trials with few clusters. Huang FL; Li X Behav Res Methods; 2022 Jun; 54(3):1181-1199. PubMed ID: 34505994 [TBL] [Abstract][Full Text] [Related]
7. Estimation and statistical inferences of variance components in the analysis of single-case experimental design using multilevel modeling. Li H; Luo W; Baek E; Thompson CG; Lam KH Behav Res Methods; 2022 Aug; 54(4):1559-1579. PubMed ID: 34508288 [TBL] [Abstract][Full Text] [Related]
8. Cross-classified multilevel models improved standard error estimates of covariates in clinical outcomes - a simulation study. Doedens P; Ter Riet G; Boyette LL; Latour C; de Haan L; Twisk J J Clin Epidemiol; 2022 May; 145():39-46. PubMed ID: 35065230 [TBL] [Abstract][Full Text] [Related]
9. Modeling approaches for cross-sectional integrative data analysis: Evaluations and recommendations. Wilcox KT; Wang L Psychol Methods; 2023 Feb; 28(1):242-261. PubMed ID: 34323585 [TBL] [Abstract][Full Text] [Related]
10. Modelling correlated data: Multilevel models and generalized estimating equations and their use with data from research in developmental disabilities. Vagenas D; Totsika V Res Dev Disabil; 2018 Oct; 81():1-11. PubMed ID: 29786528 [TBL] [Abstract][Full Text] [Related]
11. Incorporating Mobility in Growth Modeling for Multilevel and Longitudinal Item Response Data. Choi IH; Wilson M Multivariate Behav Res; 2016; 51(1):120-37. PubMed ID: 26881961 [TBL] [Abstract][Full Text] [Related]
12. Individual Mobility across Clusters: The Impact of Ignoring Cross-Classified Data Structures in Discrete-Time Survival Analysis. Cappelli CJ; Leroux AJ; Masyn KE Multivariate Behav Res; 2024; 59(1):171-186. PubMed ID: 37665722 [TBL] [Abstract][Full Text] [Related]
13. Bayesian methods for the analysis of small sample multilevel data with a complex variance structure. Baldwin SA; Fellingham GW Psychol Methods; 2013 Jun; 18(2):151-64. PubMed ID: 23148476 [TBL] [Abstract][Full Text] [Related]
14. Comparison of Test Statistics of Nonnormal and Unbalanced Samples for Multivariate Analysis of Variance in terms of Type-I Error Rates. Ateş C; Kaymaz Ö; Kale HE; Tekindal MA Comput Math Methods Med; 2019; 2019():2173638. PubMed ID: 31396289 [TBL] [Abstract][Full Text] [Related]
15. Effect size measures for longitudinal growth analyses: Extending a framework of multilevel model R-squareds to accommodate heteroscedasticity, autocorrelation, nonlinearity, and alternative centering strategies. Rights JD; Sterba SK New Dir Child Adolesc Dev; 2021 Jan; 2021(175):65-110. PubMed ID: 33512773 [TBL] [Abstract][Full Text] [Related]
16. On the Common but Problematic Specification of Conflated Random Slopes in Multilevel Models. Rights JD; Sterba SK Multivariate Behav Res; 2023; 58(6):1106-1133. PubMed ID: 37038722 [TBL] [Abstract][Full Text] [Related]
17. How to model and interpret cross-lagged effects in psychotherapy mechanisms of change research: A comparison of multilevel and structural equation models. Falkenström F; Solomonov N; Rubel JA J Consult Clin Psychol; 2022 May; 90(5):446-458. PubMed ID: 35604748 [TBL] [Abstract][Full Text] [Related]
18. Analysing multisource feedback with multilevel structural equation models: Pitfalls and recommendations from a simulation study. Mahlke J; Schultze M; Eid M Br J Math Stat Psychol; 2019 May; 72(2):294-315. PubMed ID: 30693481 [TBL] [Abstract][Full Text] [Related]
19. ANOVA and the variance homogeneity assumption: Exploring a better gatekeeper. Kim YJ; Cribbie RA Br J Math Stat Psychol; 2018 Feb; 71(1):1-12. PubMed ID: 28568313 [TBL] [Abstract][Full Text] [Related]
20. An Evaluation of Weighting Methods Based on Propensity Scores to Reduce Selection Bias in Multilevel Observational Studies. Leite WL; Jimenez F; Kaya Y; Stapleton LM; MacInnes JW; Sandbach R Multivariate Behav Res; 2015; 50(3):265-84. PubMed ID: 26610029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]