These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 35687629)

  • 1. Spartus: A 9.4 TOp/s FPGA-Based LSTM Accelerator Exploiting Spatio-Temporal Sparsity.
    Gao C; Delbruck T; Liu SC
    IEEE Trans Neural Netw Learn Syst; 2022 Jun; PP():. PubMed ID: 35687629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Post-training Quantization Method for the Design of Fixed-Point-Based FPGA/ASIC Hardware Accelerators for LSTM/GRU Algorithms.
    Rapuano E; Pacini T; Fanucci L
    Comput Intell Neurosci; 2022; 2022():9485933. PubMed ID: 35602644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Heterogeneous Hardware Accelerator for Image Classification in Embedded Systems.
    Pérez I; Figueroa M
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33918668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GRIM: A General, Real-Time Deep Learning Inference Framework for Mobile Devices Based on Fine-Grained Structured Weight Sparsity.
    Niu W; Li Z; Ma X; Dong P; Zhou G; Qian X; Lin X; Wang Y; Ren B
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):6224-6239. PubMed ID: 34133272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extremely Sparse Networks via Binary Augmented Pruning for Fast Image Classification.
    Wang P; Li F; Li G; Cheng J
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4167-4180. PubMed ID: 34752405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NullHop: A Flexible Convolutional Neural Network Accelerator Based on Sparse Representations of Feature Maps.
    Aimar A; Mostafa H; Calabrese E; Rios-Navarro A; Tapiador-Morales R; Lungu IA; Milde MB; Corradi F; Linares-Barranco A; Liu SC; Delbruck T
    IEEE Trans Neural Netw Learn Syst; 2019 Mar; 30(3):644-656. PubMed ID: 30047912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep causal speech enhancement and recognition using efficient long-short term memory Recurrent Neural Network.
    Li Z; Basit A; Daraz A; Jan A
    PLoS One; 2024; 19(1):e0291240. PubMed ID: 38170703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic hardware.
    Müller-Cleve SF; Fra V; Khacef L; Pequeño-Zurro A; Klepatsch D; Forno E; Ivanovich DG; Rastogi S; Urgese G; Zenke F; Bartolozzi C
    Front Neurosci; 2022; 16():951164. PubMed ID: 36440280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing the Deep Neural Networks by Layer-Wise Refined Pruning and the Acceleration on FPGA.
    Li H; Yue X; Wang Z; Chai Z; Wang W; Tomiyama H; Meng L
    Comput Intell Neurosci; 2022; 2022():8039281. PubMed ID: 35694575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient FPGA Implementation of Convolutional Neural Networks and Long Short-Term Memory for Radar Emitter Signal Recognition.
    Wu B; Wu X; Li P; Gao Y; Si J; Al-Dhahir N
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distributed large-scale graph processing on FPGAs.
    Sahebi A; Barbone M; Procaccini M; Luk W; Gaydadjiev G; Giorgi R
    J Big Data; 2023; 10(1):95. PubMed ID: 37283690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial and temporal prediction of secondary crashes combining stacked sparse auto-encoder and long short-term memory.
    Li H; Gao Q; Zhang Z; Zhang Y; Ren G
    Accid Anal Prev; 2023 Oct; 191():107205. PubMed ID: 37413700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Backpropagation With Sparsity Regularization for Spiking Neural Network Learning.
    Yan Y; Chu H; Jin Y; Huan Y; Zou Z; Zheng L
    Front Neurosci; 2022; 16():760298. PubMed ID: 35495028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extending the BEAGLE library to a multi-FPGA platform.
    Jin Z; Bakos JD
    BMC Bioinformatics; 2013 Jan; 14():25. PubMed ID: 23331707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping Neural Networks to FPGA-Based IoT Devices for Ultra-Low Latency Processing.
    Wielgosz M; Karwatowski M
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recurrent neural network FPGA hardware accelerator for delay-tolerant indoor optical wireless communications.
    Lee J; Song T; He J; Kandeepan S; Wang K
    Opt Express; 2021 Aug; 29(16):26165-26182. PubMed ID: 34614928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerating GRAPPA reconstruction using SoC design for real-time cardiac MRI.
    Basit A; Inam O; Omer H
    Comput Biol Med; 2023 Jun; 160():107008. PubMed ID: 37159960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward Full-Stack Acceleration of Deep Convolutional Neural Networks on FPGAs.
    Liu S; Fan H; Ferianc M; Niu X; Shi H; Luk W
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):3974-3987. PubMed ID: 33577458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Energy-Quality Scalable STDP Based Sparse Coding Processor With On-Chip Learning Capability.
    Kim H; Tang H; Choi W; Park J
    IEEE Trans Biomed Circuits Syst; 2020 Feb; 14(1):125-137. PubMed ID: 31905147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GT-LSTM: A spatio-temporal ensemble network for traffic flow prediction.
    Luo Y; Zheng J; Wang X; Tao Y; Jiang X
    Neural Netw; 2024 Mar; 171():251-262. PubMed ID: 38103435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.