These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35688027)

  • 1. Liver ductal organoids reconstruct intrahepatic biliary trees in decellularized liver grafts.
    Tomofuji K; Fukumitsu K; Kondo J; Horie H; Makino K; Wakama S; Ito T; Oshima Y; Ogiso S; Ishii T; Inoue M; Hatano E
    Biomaterials; 2022 Aug; 287():121614. PubMed ID: 35688027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaffolds obtained from decellularized human extrahepatic bile ducts support organoids to establish functional biliary tissue in a dish.
    Willemse J; Roos FJM; Voogt IJ; Schurink IJ; Bijvelds M; de Jonge HR; van der Laan LJW; de Jonge J; Verstegen MMA
    Biotechnol Bioeng; 2021 Feb; 118(2):836-851. PubMed ID: 33118611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repopulation of intrahepatic bile ducts in engineered rat liver grafts.
    Chen Y; Devalliere J; Bulutoglu B; Yarmush ML; Uygun BE
    Technology (Singap World Sci); 2019; 7(1-2):46-55. PubMed ID: 31388515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directing the growth and alignment of biliary epithelium within extracellular matrix hydrogels.
    Lewis PL; Yan M; Su J; Shah RN
    Acta Biomater; 2019 Feb; 85():84-93. PubMed ID: 30590182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and propagation of primary human cholangiocyte organoids for the generation of bioengineered biliary tissue.
    Tysoe OC; Justin AW; Brevini T; Chen SE; Mahbubani KT; Frank AK; Zedira H; Melum E; Saeb-Parsy K; Markaki AE; Vallier L; Sampaziotis F
    Nat Protoc; 2019 Jun; 14(6):1884-1925. PubMed ID: 31110298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids.
    Sampaziotis F; Justin AW; Tysoe OC; Sawiak S; Godfrey EM; Upponi SS; Gieseck RL; de Brito MC; Berntsen NL; Gómez-Vázquez MJ; Ortmann D; Yiangou L; Ross A; Bargehr J; Bertero A; Zonneveld MCF; Pedersen MT; Pawlowski M; Valestrand L; Madrigal P; Georgakopoulos N; Pirmadjid N; Skeldon GM; Casey J; Shu W; Materek PM; Snijders KE; Brown SE; Rimland CA; Simonic I; Davies SE; Jensen KB; Zilbauer M; Gelson WTH; Alexander GJ; Sinha S; Hannan NRF; Wynn TA; Karlsen TH; Melum E; Markaki AE; Saeb-Parsy K; Vallier L
    Nat Med; 2017 Aug; 23(8):954-963. PubMed ID: 28671689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver.
    Sampaziotis F; Muraro D; Tysoe OC; Sawiak S; Beach TE; Godfrey EM; Upponi SS; Brevini T; Wesley BT; Garcia-Bernardo J; Mahbubani K; Canu G; Gieseck R; Berntsen NL; Mulcahy VL; Crick K; Fear C; Robinson S; Swift L; Gambardella L; Bargehr J; Ortmann D; Brown SE; Osnato A; Murphy MP; Corbett G; Gelson WTH; Mells GF; Humphreys P; Davies SE; Amin I; Gibbs P; Sinha S; Teichmann SA; Butler AJ; See TC; Melum E; Watson CJE; Saeb-Parsy K; Vallier L
    Science; 2021 Feb; 371(6531):839-846. PubMed ID: 33602855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel model of injured liver ductal organoids to investigate cholangiocyte apoptosis with relevance to biliary atresia.
    Chusilp S; Lee C; Li B; Lee D; Yamoto M; Ganji N; Vejchapipat P; Pierro A
    Pediatr Surg Int; 2020 Dec; 36(12):1471-1479. PubMed ID: 33084932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High level of polarized engraftment of porcine intrahepatic cholangiocyte organoids in decellularized liver scaffolds.
    Krüger M; Samsom RA; Oosterhoff LA; van Wolferen ME; Kooistra HS; Geijsen N; Penning LC; Kock LM; Sainz-Arnal P; Baptista PM; Spee B
    J Cell Mol Med; 2022 Oct; 26(19):4949-4958. PubMed ID: 36017767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel approach for reconstruction of the three-dimensional biliary system in decellularized liver scaffold using hepatocyte progenitors.
    Hirukawa K; Yagi H; Kuroda K; Watanabe M; Nishi K; Nagata S; Abe Y; Kitago M; Adachi S; Sudo R; Kitagawa Y
    PLoS One; 2024; 19(2):e0297285. PubMed ID: 38359035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recellularization via the bile duct supports functional allogenic and xenogenic cell growth on a decellularized rat liver scaffold.
    Hassanein W; Uluer MC; Langford J; Woodall JD; Cimeno A; Dhru U; Werdesheim A; Harrison J; Rivera-Pratt C; Klepfer S; Khalifeh A; Buckingham B; Brazio PS; Parsell D; Klassen C; Drachenberg C; Barth RN; LaMattina JC
    Organogenesis; 2017 Jan; 13(1):16-27. PubMed ID: 28029279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholangiocyte organoids from human bile retain a local phenotype and can repopulate bile ducts in vitro.
    Roos FJM; Wu H; Willemse J; Lieshout R; Albarinos LAM; Kan YY; Poley JW; Bruno MJ; de Jonge J; Bártfai R; Marks H; IJzermans JNM; Verstegen MMA; van der Laan LJW
    Clin Transl Med; 2021 Dec; 11(12):e566. PubMed ID: 34954911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation and metabolomic characterization of functional ductal organoids with biliary tree networks in decellularized liver scaffolds.
    Chen J; Ma S; Yang H; Liang X; Yao H; Guo B; Chen D; Jiang J; Shi D; Xin J; Ren K; Zhou X; Li Y; Geng L; Li J
    Bioact Mater; 2023 Aug; 26():452-464. PubMed ID: 37035760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional Differences in Human Biliary Tissues and Corresponding In Vitro-Derived Organoids.
    Rimland CA; Tilson SG; Morell CM; Tomaz RA; Lu WY; Adams SE; Georgakopoulos N; Otaizo-Carrasquero F; Myers TG; Ferdinand JR; Gieseck RL; Sampaziotis F; Tysoe OC; Ross A; Kraiczy JM; Wesley B; Muraro D; Zilbauer M; Oniscu GC; Hannan NRF; Forbes SJ; Saeb-Parsy K; Wynn TA; Vallier L
    Hepatology; 2021 Jan; 73(1):247-267. PubMed ID: 32222998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioengineering human intestinal mucosal grafts using patient-derived organoids, fibroblasts and scaffolds.
    Meran L; Tullie L; Eaton S; De Coppi P; Li VSW
    Nat Protoc; 2023 Jan; 18(1):108-135. PubMed ID: 36261633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex bile duct network formation within liver decellularized extracellular matrix hydrogels.
    Lewis PL; Su J; Yan M; Meng F; Glaser SS; Alpini GD; Green RM; Sosa-Pineda B; Shah RN
    Sci Rep; 2018 Aug; 8(1):12220. PubMed ID: 30111800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shaping Tomorrow's Liver Organoids: A Journey Toward Integrating Bile Ducts.
    Rizwan M
    Adv Biol (Weinh); 2024 Feb; 8(2):e2300450. PubMed ID: 37845008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of Hepatic Organoids with Biliary Structures.
    Katsuda T; Ochiya T; Sakai Y
    Methods Mol Biol; 2019; 1905():175-185. PubMed ID: 30536100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human amniotic fluid stem cells attenuate cholangiocyte apoptosis in a bile duct injury model of liver ductal organoids.
    Chusilp S; Lee C; Li B; Lee D; Yamoto M; Ganji N; Vejchapipat P; Pierro A
    J Pediatr Surg; 2021 Jan; 56(1):11-16. PubMed ID: 33129508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oncogenic KRAS-expressing organoids with biliary epithelial stem cell properties give rise to biliary tract cancer in mice.
    Kasuga A; Semba T; Sato R; Nobusue H; Sugihara E; Takaishi H; Kanai T; Saya H; Arima Y
    Cancer Sci; 2021 May; 112(5):1822-1838. PubMed ID: 33068050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.