These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35688086)

  • 1. Pro-oxidative activity of trout and bovine hemoglobin during digestion using a static in vitro gastrointestinal model.
    Wu H; Tullberg C; Ghirmai S; Undeland I
    Food Chem; 2022 Nov; 393():133356. PubMed ID: 35688086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of malondialdehyde (MDA), 4-hydroxy-2-hexenal (HHE) and 4-hydroxy-2-nonenal (HNE) in fish and fish oil during dynamic gastrointestinal in vitro digestion.
    Larsson K; Harrysson H; Havenaar R; Alminger M; Undeland I
    Food Funct; 2016 Feb; 7(2):1176-87. PubMed ID: 26824872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Malondialdehyde and 4-hydroxy-2-hexenal are formed during dynamic gastrointestinal in vitro digestion of cod liver oils.
    Larsson K; Tullberg C; Alminger M; Havenaar R; Undeland I
    Food Funct; 2016 Aug; 7(8):3458-67. PubMed ID: 27396605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural analysis of fish versus mammalian hemoglobins: effect of the heme pocket environment on autooxidation and hemin loss.
    Aranda R; Cai H; Worley CE; Levin EJ; Li R; Olson JS; Phillips GN; Richards MP
    Proteins; 2009 Apr; 75(1):217-30. PubMed ID: 18831041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid oxidation in trout muscle is strongly inhibited by a protein that specifically binds hemin released from hemoglobin.
    Cai H; Grunwald EW; Park SY; Lei B; Richards MP
    J Agric Food Chem; 2013 May; 61(17):4180-7. PubMed ID: 23570608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of reactive aldehydes (MDA, HHE, HNE) during the digestion of cod liver oil: comparison of human and porcine in vitro digestion models.
    Tullberg C; Larsson K; Carlsson NG; Comi I; Scheers N; Vegarud G; Undeland I
    Food Funct; 2016 Mar; 7(3):1401-12. PubMed ID: 26838473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of methemoglobin (MetHb) formation and hemin loss in the pro-oxidant activity of fish hemoglobins.
    Maestre R; Pazos M; Medina I
    J Agric Food Chem; 2009 Aug; 57(15):7013-21. PubMed ID: 19722582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myoglobin and haemoglobin-mediated lipid oxidation in washed muscle: observations on crosslinking, ferryl formation, porphyrin degradation, and haemin loss rate.
    Lee SK; Tatiyaborworntham N; Grunwald EW; Richards MP
    Food Chem; 2015 Jan; 167():258-63. PubMed ID: 25148987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors influencing the antioxidant effect of phospholipase A2 against lipid oxidation promoted by trout hemoglobin and hemin in washed muscle.
    Tatiyaborworntham N; Yin J; Richards MP
    Food Chem; 2021 May; 343():128428. PubMed ID: 33131955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of marine oils during in vitro gastrointestinal digestion with human digestive fluids - Role of oil origin, added tocopherols and lipolytic activity.
    Tullberg C; Vegarud G; Undeland I
    Food Chem; 2019 Jan; 270():527-537. PubMed ID: 30174082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of fish heme protein structure and lipid substrate composition on hemoglobin-mediated lipid oxidation.
    Richards MP; Nelson NM; Kristinsson HG; Mony SS; Petty HT; Oliveira AC
    J Agric Food Chem; 2007 May; 55(9):3643-54. PubMed ID: 17394329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting the binding of trout HbI and HbIV to washed cod mince model system and their influence on lipid oxidation.
    Sannaveerappa T; Cai H; Richards MP; Undeland I
    Food Chem; 2014 Jan; 143():392-7. PubMed ID: 24054257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms involved in hemoglobin-mediated oxidation of lipids in washed fish muscle and inhibitory effects of phospholipase A2.
    Tatiyaborworntham N; Richards MP
    J Sci Food Agric; 2018 May; 98(7):2816-2823. PubMed ID: 29134657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-Chain n-3 PUFA Content and n-6/n-3 PUFA Ratio in Mammal, Poultry, and Fish Muscles Largely Explain Differential Protein and Lipid Oxidation Profiles Following In Vitro Gastrointestinal Digestion.
    Van Hecke T; Goethals S; Vossen E; De Smet S
    Mol Nutr Food Res; 2019 Nov; 63(22):e1900404. PubMed ID: 31483096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attributes of lipid oxidation due to bovine myoglobin, hemoglobin and hemolysate.
    Yin J; Zhang W; Richards MP
    Food Chem; 2017 Nov; 234():230-235. PubMed ID: 28551230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of different hemoglobins: autoxidation, reaction with peroxide, and lipid oxidation.
    Richards MP; Dettmann MA
    J Agric Food Chem; 2003 Jun; 51(13):3886-91. PubMed ID: 12797760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of acid and alkali unfolding and subsequent refolding on the pro-oxidative activity of trout hemoglobin.
    Kristinsson HG; Hultin HO
    J Agric Food Chem; 2004 Aug; 52(17):5482-90. PubMed ID: 15315389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of fiber-bound polyphenols from highland barley on lipid oxidation products of cooked pork during in vitro gastrointestinal digestion.
    Li J; Zhang H; Yang X; Zhu L; Wu G; Qi X; Zhang H; Wang Y; Chen X
    J Sci Food Agric; 2023 Aug; 103(10):5070-5076. PubMed ID: 36987556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemoglobin-mediated lipid oxidation and compositional characteristics of washed fish mince model systems made from cod (Gadus morhua), herring (Clupea harengus), and salmon (Salmo salar) muscle.
    Larsson K; Almgren A; Undeland I
    J Agric Food Chem; 2007 Oct; 55(22):9027-35. PubMed ID: 17910510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency of hemoglobin from rainbow trout, cod, and herring in promotion of hydroperoxide-derived free radicals.
    Pazos M; Andersen ML; Skibsted LH
    J Agric Food Chem; 2009 Sep; 57(18):8661-7. PubMed ID: 19705833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.