These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Gelling properties of silver carp surimi incorporated with konjac glucomannan: Effects of deacetylation degree. Yan W; Yin T; Xiong S; You J; Hu Y; Huang Q Int J Biol Macromol; 2021 Nov; 191():925-933. PubMed ID: 34597696 [TBL] [Abstract][Full Text] [Related]
23. Facile post-gelation soaking strategy toward low-alkaline konjac glucomannan gels. Liang X; Zheng Q; Liu Z; Zhao G; Zhou Y Int J Biol Macromol; 2023 Jan; 225():1204-1211. PubMed ID: 36427610 [TBL] [Abstract][Full Text] [Related]
24. Effect of degree of acetylation on gelation of konjac glucomannan. Gao S; Nishinari K Biomacromolecules; 2004; 5(1):175-85. PubMed ID: 14715024 [TBL] [Abstract][Full Text] [Related]
25. Effects of pH and temperature on colloidal properties and molecular characteristics of Konjac glucomannan. Jian W; Siu KC; Wu JY Carbohydr Polym; 2015 Dec; 134():285-92. PubMed ID: 26428126 [TBL] [Abstract][Full Text] [Related]
26. Effect of pretreatment with electron beam irradiation on the deacetylation efficiency of konjac glucomannan and its structural, physicochemical and gel properties. Zheng Y; Liu Q; Luo H; Zheng J; Li W Int J Biol Macromol; 2024 Sep; 276(Pt 1):133887. PubMed ID: 39019354 [TBL] [Abstract][Full Text] [Related]
27. Effect of konjac oligo-glucomannan on emulsifying properties of myofibrillar protein. Duan Z; Wang Y; Yu X; Wu N; Pang J; Bai Y J Sci Food Agric; 2023 Aug; 103(11):5261-5269. PubMed ID: 37005375 [TBL] [Abstract][Full Text] [Related]
28. Effects of high pressure processing on gelation properties and molecular forces of myosin containing deacetylated konjac glucomannan. Li Z; Wang J; Zheng B; Guo Z Food Chem; 2019 Sep; 291():117-125. PubMed ID: 31006449 [TBL] [Abstract][Full Text] [Related]
29. Fabrication and Characterization of Konjac Glucomannan/Oat β-Glucan Composite Hydrogel: Microstructure, Physicochemical Properties and Gelation Mechanism Studies. Geng X; Zhao N; Song X; Wu J; Zhu Q; Wu T; Chen H; Zhang M Molecules; 2022 Dec; 27(23):. PubMed ID: 36500586 [TBL] [Abstract][Full Text] [Related]
30. Ultrasonic Degradation of Konjac Glucomannan and the Effect of Freezing Combined with Alkali Treatment on Their Rheological Profiles. Zhu B; Xin C; Li J; Li B Molecules; 2019 May; 24(10):. PubMed ID: 31091822 [TBL] [Abstract][Full Text] [Related]
31. Highly ordered aggregation of soy protein isolate particles for enhanced gel-related properties through konjac glucomannan addition. Tu W; Liu X; Li K; Zhang B; Jiang F; Qiao D Food Chem; 2025 Jan; 462():141004. PubMed ID: 39216378 [TBL] [Abstract][Full Text] [Related]
32. Mechanism for the synergistic gelation of konjac glucomannan and κ-carrageenan. Li Y; Li K; Guo Y; Liu Y; Zhao G; Qiao D; Jiang F; Zhang B Int J Biol Macromol; 2024 Oct; 277(Pt 3):134423. PubMed ID: 39097045 [TBL] [Abstract][Full Text] [Related]
33. Effects of hydrocolloids as fat-replacers on the physicochemical and structural properties of salt-soluble protein isolated from water-boiled pork meatballs. Li Y; Guo J; Wang Y; Zhang F; Chen S; Hu Y; Zhou M Meat Sci; 2023 Oct; 204():109280. PubMed ID: 37453293 [TBL] [Abstract][Full Text] [Related]
34. Dissolution and rheological behavior of deacetylated konjac glucomannan in urea aqueous solution. Wang S; Zhan Y; Wu X; Ye T; Li Y; Wang L; Chen Y; Li B Carbohydr Polym; 2014 Jan; 101():499-504. PubMed ID: 24299804 [TBL] [Abstract][Full Text] [Related]
35. Gelation of konjac glucomannan by acetylmannan esterases from Aspergillus oryzae. Saito M; Nakaya M; Kondo T; Nakazawa M; Ueda M; Naganawa S; Hasegawa Y; Sakamoto T Enzyme Microb Technol; 2022 Oct; 160():110075. PubMed ID: 35691189 [TBL] [Abstract][Full Text] [Related]
36. Low temperature and freezing pretreatment for konjac glucomannan powder to improve gel strength. Chen J; Yang X; Xia X; Wang L; Wu S; Pang J Int J Biol Macromol; 2022 Dec; 222(Pt A):1578-1588. PubMed ID: 36206838 [TBL] [Abstract][Full Text] [Related]
37. Evaluating the effect of thermo-reversible and thermo-irreversible curdlan gels on the gelling properties and in vitro digestibility of myofibrillar protein gels under low-salt condition. Xu Y; Liang X; Kong B; Sun F; Xia X; Zhang H; Liu Q; Cao C Food Res Int; 2024 Apr; 181():114115. PubMed ID: 38448099 [TBL] [Abstract][Full Text] [Related]
38. Rheology and synergy of κ-carrageenan/locust bean gum/konjac glucomannan gels. Brenner T; Wang Z; Achayuthakan P; Nakajima T; Nishinari K Carbohydr Polym; 2013 Oct; 98(1):754-60. PubMed ID: 23987409 [TBL] [Abstract][Full Text] [Related]
39. A Review on Konjac Glucomannan Gels: Microstructure and Application. Yang D; Yuan Y; Wang L; Wang X; Mu R; Pang J; Xiao J; Zheng Y Int J Mol Sci; 2017 Oct; 18(11):. PubMed ID: 29076996 [TBL] [Abstract][Full Text] [Related]
40. Compatibility of sodium alginate and konjac glucomannan and their applications in fabricating low-fat mayonnaise-like emulsion gels. Yang X; Gong T; Lu YH; Li A; Sun L; Guo Y Carbohydr Polym; 2020 Feb; 229():115468. PubMed ID: 31826449 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]