These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 35688153)

  • 1. Fibroblast fate determination during cardiac reprogramming by remodeling of actin filaments.
    Zhang Z; Zhang W; Blakes R; Sundby LJ; Shi Z; Rockey DC; Ervasti JM; Nam YJ
    Stem Cell Reports; 2022 Jul; 17(7):1604-1619. PubMed ID: 35688153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MiR-590 Promotes Transdifferentiation of Porcine and Human Fibroblasts Toward a Cardiomyocyte-Like Fate by Directly Repressing Specificity Protein 1.
    Singh VP; Mathison M; Patel V; Sanagasetti D; Gibson BW; Yang J; Rosengart TK
    J Am Heart Assoc; 2016 Nov; 5(11):. PubMed ID: 27930352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiomyocyte precursors generated by direct reprogramming and molecular beacon selection attenuate ventricular remodeling after experimental myocardial infarction.
    Bachamanda Somesh D; Klose K; Maring JA; Kunkel D; Jürchott K; Protze SI; Klein O; Nebrich G; Becker M; Krüger U; Nazari-Shafti TZ; Falk V; Kurtz A; Gossen M; Stamm C
    Stem Cell Res Ther; 2023 Oct; 14(1):296. PubMed ID: 37840130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia Enhances Direct Reprogramming of Mouse Fibroblasts to Cardiomyocyte-Like Cells.
    Wang Y; Shi S; Liu H; Meng L
    Cell Reprogram; 2016 Feb; 18(1):1-7. PubMed ID: 26757100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.
    Muraoka N; Yamakawa H; Miyamoto K; Sadahiro T; Umei T; Isomi M; Nakashima H; Akiyama M; Wada R; Inagawa K; Nishiyama T; Kaneda R; Fukuda T; Takeda S; Tohyama S; Hashimoto H; Kawamura Y; Goshima N; Aeba R; Yamagishi H; Fukuda K; Ieda M
    EMBO J; 2014 Jul; 33(14):1565-81. PubMed ID: 24920580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chamber-Specific Protein Expression during Direct Cardiac Reprogramming.
    Zhang Z; Villalpando J; Zhang W; Nam YJ
    Cells; 2021 Jun; 10(6):. PubMed ID: 34208439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of Cardiomyocyte-Like Cells by Fibroblast Reprogramming with Defined Factors.
    Bektik E; Fu JD
    Methods Mol Biol; 2021; 2239():33-46. PubMed ID: 33226611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing Cardiac Reprogramming using High Content Imaging Analysis.
    Zhang Z; Nam YJ
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33165328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes.
    Jayawardena TM; Egemnazarov B; Finch EA; Zhang L; Payne JA; Pandya K; Zhang Z; Rosenberg P; Mirotsou M; Dzau VJ
    Circ Res; 2012 May; 110(11):1465-73. PubMed ID: 22539765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensuring expression of four core cardiogenic transcription factors enhances cardiac reprogramming.
    Zhang Z; Zhang AD; Kim LJ; Nam YJ
    Sci Rep; 2019 Apr; 9(1):6362. PubMed ID: 31019236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translational perspectives on cardiac reprogramming.
    Nam YJ
    Semin Cell Dev Biol; 2022 Feb; 122():14-20. PubMed ID: 34210578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro.
    Qian L; Berry EC; Fu JD; Ieda M; Srivastava D
    Nat Protoc; 2013 Jun; 8(6):1204-15. PubMed ID: 23722259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single cell qPCR reveals that additional HAND2 and microRNA-1 facilitate the early reprogramming progress of seven-factor-induced human myocytes.
    Bektik E; Dennis A; Prasanna P; Madabhushi A; Fu JD
    PLoS One; 2017; 12(8):e0183000. PubMed ID: 28796841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes.
    Zhou H; Dickson ME; Kim MS; Bassel-Duby R; Olson EN
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11864-9. PubMed ID: 26354121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient Activation of Reprogramming Transcription Factors Using Protein Transduction Facilitates Conversion of Human Fibroblasts Toward Cardiomyocyte-Like Cells.
    Ghazizadeh Z; Rassouli H; Fonoudi H; Alikhani M; Talkhabi M; Darbandi-Azar A; Chen S; Baharvand H; Aghdami N; Salekdeh GH
    Mol Biotechnol; 2017 Jun; 59(6):207-220. PubMed ID: 28509990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes.
    Qian L; Huang Y; Spencer CI; Foley A; Vedantham V; Liu L; Conway SJ; Fu JD; Srivastava D
    Nature; 2012 May; 485(7400):593-8. PubMed ID: 22522929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte.
    Liu Z; Wang L; Welch JD; Ma H; Zhou Y; Vaseghi HR; Yu S; Wall JB; Alimohamadi S; Zheng M; Yin C; Shen W; Prins JF; Liu J; Qian L
    Nature; 2017 Nov; 551(7678):100-104. PubMed ID: 29072293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reprogramming of Non-myocytes into Cardiomyocyte-like Cells: Challenges and Opportunities.
    Farber G; Qian L
    Curr Cardiol Rep; 2020 Jun; 22(8):54. PubMed ID: 32562156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vitro Conversion of Murine Fibroblasts into Cardiomyocyte-Like Cells.
    Xu J; Wang L; Liu J; Qian L
    Methods Mol Biol; 2021; 2158():155-170. PubMed ID: 32857372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The heart of cardiac reprogramming: The cardiac fibroblasts.
    Ricketts SN; Qian L
    J Mol Cell Cardiol; 2022 Nov; 172():90-99. PubMed ID: 36007393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.