These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 35688189)

  • 21. A hybrid nanofiltration and reverse osmosis process for urine treatment: Effect on urea recovery and purity.
    Courtney C; Randall DG
    Water Res; 2022 Aug; 222():118851. PubMed ID: 35878521
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removal of pharmaceutically active compounds from water sources using nanofiltration and reverse osmosis membranes: Comparison of removal efficiencies and in-depth analysis of rejection mechanisms.
    Matin A; Jillani SMS; Baig U; Ihsanullah I; Alhooshani K
    J Environ Manage; 2023 Jul; 338():117682. PubMed ID: 37003228
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of Naturally Occurring Strontium by Nanofiltration/Reverse Osmosis from Groundwater.
    Cai YH; Yang XJ; Schäfer AI
    Membranes (Basel); 2020 Oct; 10(11):. PubMed ID: 33143167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment.
    Radjenović J; Petrović M; Ventura F; Barceló D
    Water Res; 2008 Aug; 42(14):3601-10. PubMed ID: 18656225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparing the performance of various nanofiltration membranes in advanced oxidation-nanofiltration treatment of reverse osmosis concentrates.
    Li N; Wang X; Zhang H; Zhang Z; Ding J; Lu J
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):17472-17481. PubMed ID: 31020525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-dimensional parametric study for enhancing Brackish Water Reverse Osmosis membrane performance suited for desalination of low salinity feeds.
    Thummar UG; Amaliar G; Sutariya B; Singh PS
    Water Environ Res; 2024 May; 96(5):e11028. PubMed ID: 38715392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces.
    Khan MM; Stewart PS; Moll DJ; Mickols WE; Nelson SE; Camper AK
    Biofouling; 2011 Feb; 27(2):173-83. PubMed ID: 21253926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A complementary approach of response surface methodology and an artificial neural network for the optimization and prediction of low salinity reverse osmosis performance.
    Brooke R; Fan L; Khayet M; Wang X
    Heliyon; 2022 Sep; 8(9):e10692. PubMed ID: 36185130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater.
    Tang CY; Fu QS; Criddle CS; Leckie JO
    Environ Sci Technol; 2007 Mar; 41(6):2008-14. PubMed ID: 17410798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination.
    Warsinger DM; Tow EW; Nayar KG; Maswadeh LA; Lienhard V JH
    Water Res; 2016 Dec; 106():272-282. PubMed ID: 27728821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trace organic solutes in closed-loop forward osmosis applications: influence of membrane fouling and modeling of solute build-up.
    D'Haese A; Le-Clech P; Van Nevel S; Verbeken K; Cornelissen ER; Khan SJ; Verliefde AR
    Water Res; 2013 Sep; 47(14):5232-44. PubMed ID: 23866149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of multiple pesticides from water by different types of membranes.
    Seah MQ; Ng ZC; Lai GS; Lau WJ; Al-Ghouti MA; Alias NH; Ismail AF
    Chemosphere; 2024 May; 356():141960. PubMed ID: 38604517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes.
    Nataraj SK; Hosamani KM; Aminabhavi TM
    Water Res; 2006 Jul; 40(12):2349-56. PubMed ID: 16757012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane technology applied to acid mine drainage from copper mining.
    Ambiado K; Bustos C; Schwarz A; Bórquez R
    Water Sci Technol; 2017 Feb; 75(3-4):705-715. PubMed ID: 28192364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal Characteristics of N-Nitrosamines and Their Precursors by Pilot-Scale Integrated Membrane Systems for Water Reuse.
    Takeuchi H; Yamashita N; Nakada N; Tanaka H
    Int J Environ Res Public Health; 2018 Sep; 15(9):. PubMed ID: 30205535
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A concise analytical model for the ideal reverse osmosis desalination processes.
    Song L
    Water Environ Res; 2023 Oct; 95(10):e10939. PubMed ID: 37815295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrating tunable anion exchange with reverse osmosis for enhanced recovery during inland brackish water desalination.
    Smith RC; SenGupta AK
    Environ Sci Technol; 2015 May; 49(9):5637-44. PubMed ID: 25839209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water recovery from yarn fabric dyeing wastewater using electrochemical oxidation and membrane processes.
    Bouchareb R; Bilici Z; Dizge N
    Water Environ Res; 2022 Jan; 94(1):e1681. PubMed ID: 35075710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design considerations for wastewater treatment by reverse osmosis.
    Bartels CR; Wilf M; Andes K; Iong J
    Water Sci Technol; 2005; 51(6-7):473-82. PubMed ID: 16004010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Minimal and zero liquid discharge with reverse osmosis using low-salt-rejection membranes.
    Wang Z; Deshmukh A; Du Y; Elimelech M
    Water Res; 2020 Mar; 170():115317. PubMed ID: 31786394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.