These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 356882)
41. Properties of channels reconstituted from the major intrinsic protein of lens fiber membranes. Ehring GR; Zampighi G; Horwitz J; Bok D; Hall JE J Gen Physiol; 1990 Sep; 96(3):631-64. PubMed ID: 1700061 [TBL] [Abstract][Full Text] [Related]
42. Role of lysines in ion selectivity of bacterial outer membrane porins. Hancock RE; Schmidt A; Bauer K; Benz R Biochim Biophys Acta; 1986 Aug; 860(2):263-7. PubMed ID: 2427115 [TBL] [Abstract][Full Text] [Related]
43. Structural and functional properties of colicin B. Pressler U; Braun V; Wittmann-Liebold B; Benz R J Biol Chem; 1986 Feb; 261(6):2654-9. PubMed ID: 2419320 [TBL] [Abstract][Full Text] [Related]
44. Ion conductance and selectivity of single calcium-activated potassium channels in cultured rat muscle. Blatz AL; Magleby KL J Gen Physiol; 1984 Jul; 84(1):1-23. PubMed ID: 6086805 [TBL] [Abstract][Full Text] [Related]
45. Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Cruickshank CC; Minchin RF; Le Dain AC; Martinac B Biophys J; 1997 Oct; 73(4):1925-31. PubMed ID: 9336188 [TBL] [Abstract][Full Text] [Related]
46. Colicin K acts by forming voltage-dependent channels in phospholipid bilayer membranes. Schein SJ; Kagan BL; Finkelstein A Nature; 1978 Nov; 276(5684):159-63. PubMed ID: 740032 [TBL] [Abstract][Full Text] [Related]
47. Reconstitution in planar lipid bilayers of a Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle. Latorre R; Vergara C; Hidalgo C Proc Natl Acad Sci U S A; 1982 Feb; 79(3):805-9. PubMed ID: 6278496 [TBL] [Abstract][Full Text] [Related]
48. VDAC channels mediate and gate the flow of ATP: implications for the regulation of mitochondrial function. Rostovtseva T; Colombini M Biophys J; 1997 May; 72(5):1954-62. PubMed ID: 9129800 [TBL] [Abstract][Full Text] [Related]
49. Single channel activity of OmpF-like porin from Yersinia pseudotuberculosis. Rokitskaya TI; Kotova EA; Naberezhnykh GA; Khomenko VA; Gorbach VI; Firsov AM; Zelepuga EA; Antonenko YN; Novikova OD Biochim Biophys Acta; 2016 Apr; 1858(4):883-91. PubMed ID: 26854962 [TBL] [Abstract][Full Text] [Related]
50. Electrophysiological behavior of the TolC channel-tunnel in planar lipid bilayers. Andersen C; Hughes C; Koronakis V J Membr Biol; 2002 Jan; 185(1):83-92. PubMed ID: 11891567 [TBL] [Abstract][Full Text] [Related]
51. Voltage-dependent block of anthrax toxin channels in planar phospholipid bilayer membranes by symmetric tetraalkylammonium ions. Effects on macroscopic conductance. Blaustein RO; Finkelstein A J Gen Physiol; 1990 Nov; 96(5):905-19. PubMed ID: 1704045 [TBL] [Abstract][Full Text] [Related]
52. A voltage-gated cation conductance channel from fragmented sarcoplasmic reticulum. Effects of transition metal ions. Miller C; Rosenberg RL Biochemistry; 1979 Apr; 18(7):1138-45. PubMed ID: 427104 [No Abstract] [Full Text] [Related]
53. Channel-closing activity of porins from Escherichia coli in bilayer lipid membranes. Xu GZ; Shi B; McGroarty EJ; Tien HT Biochim Biophys Acta; 1986 Nov; 862(1):57-64. PubMed ID: 2429702 [TBL] [Abstract][Full Text] [Related]
54. Mechanism of blockage of amphotericin B channels in a lipid bilayer. Borisova MP; Ermishkin LN; Silberstein AY Biochim Biophys Acta; 1979 Jun; 553(3):450-9. PubMed ID: 454595 [TBL] [Abstract][Full Text] [Related]
55. Enterotoxin of Clostridium perfringens type A forms ion-permeable channels in a lipid bilayer membrane. Sugimoto N; Takagi M; Ozutsumi K; Harada S; Matsuda M Biochem Biophys Res Commun; 1988 Oct; 156(1):551-6. PubMed ID: 2460102 [TBL] [Abstract][Full Text] [Related]
56. Electrophysiological studies in Xenopus oocytes for the opening of Escherichia coli SecA-dependent protein-conducting channels. Lin BR; Gierasch LM; Jiang C; Tai PC J Membr Biol; 2006; 214(2):103-13. PubMed ID: 17530158 [TBL] [Abstract][Full Text] [Related]
57. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers. Cukierman S; Quigley EP; Crumrine DS Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442 [TBL] [Abstract][Full Text] [Related]
58. Ion transport through hemocyanin channels in oxidized cholesterol artificial bilayer membranes. Menestrina G; Antolini R Biochim Biophys Acta; 1981 May; 643(3):616-25. PubMed ID: 6264956 [TBL] [Abstract][Full Text] [Related]
59. The nature of the voltage-dependent conductance of the hemocyanin channel. Latorre R; Alvarez O; Ehrenstein G; Espinoza M; Reyes J J Membr Biol; 1975 Dec; 25(1-2):163-81. PubMed ID: 1214285 [TBL] [Abstract][Full Text] [Related]
60. Redistribution of the electric field within the pore contributes to the voltage-dependence of mitochondrial porin channel. Ermishkin LN; Mirzabekov TA Biochim Biophys Acta; 1990 Jan; 1021(2):161-8. PubMed ID: 1689178 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]