These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35688315)

  • 1. Intracranial brain-computer interface spelling using localized visual motion response.
    Liu D; Xu X; Li D; Li J; Yu X; Ling Z; Hong B
    Neuroimage; 2022 Sep; 258():119363. PubMed ID: 35688315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards solving of the Illiteracy phenomenon for VEP-based brain-computer interfaces.
    Volosyak I; Rezeika A; Benda M; Gembler F; Stawicki P
    Biomed Phys Eng Express; 2020 May; 6(3):035034. PubMed ID: 33438679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementing Over 100 Command Codes for a High-Speed Hybrid Brain-Computer Interface Using Concurrent P300 and SSVEP Features.
    Xu M; Han J; Wang Y; Jung TP; Ming D
    IEEE Trans Biomed Eng; 2020 Nov; 67(11):3073-3082. PubMed ID: 32149621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From full calibration to zero training for a code-modulated visual evoked potentials for brain-computer interface.
    Thielen J; Marsman P; Farquhar J; Desain P
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33690182
    [No Abstract]   [Full Text] [Related]  

  • 5. High-speed spelling with a noninvasive brain-computer interface.
    Chen X; Wang Y; Nakanishi M; Gao X; Jung TP; Gao S
    Proc Natl Acad Sci U S A; 2015 Nov; 112(44):E6058-67. PubMed ID: 26483479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Doubling the Speed of N200 Speller via Dual-Directional Motion Encoding.
    Liu D; Liu C; Chen J; Zhang D; Hong B
    IEEE Trans Biomed Eng; 2021 Jan; 68(1):204-213. PubMed ID: 32746042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
    Chen X; Wang Y; Gao S; Jung TP; Gao X
    J Neural Eng; 2015 Aug; 12(4):046008. PubMed ID: 26035476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A speedy hybrid BCI spelling approach combining P300 and SSVEP.
    Yin E; Zhou Z; Jiang J; Chen F; Liu Y; Hu D
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):473-83. PubMed ID: 24058009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An eighty-target high-speed Chinese BCI speller.
    Chengcheng Han ; Guanghua Xu ; Jun Xie ; Min Li ; Sicong Zhang ; Ailing Luo
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1652-1655. PubMed ID: 29060201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard.
    Hwang HJ; Lim JH; Jung YJ; Choi H; Lee SW; Im CH
    J Neurosci Methods; 2012 Jun; 208(1):59-65. PubMed ID: 22580222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-speed brain-computer interface (BCI) using dry EEG electrodes.
    SpĆ¼ler M
    PLoS One; 2017; 12(2):e0172400. PubMed ID: 28225794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid frequency and phase coding for a high-speed SSVEP-based BCI speller.
    Chen X; Wang Y; Nakanishi M; Jung TP; Gao X
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3993-6. PubMed ID: 25570867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Hybrid Speller Design Using Eye Tracking and SSVEP Brain-Computer Interface.
    Mannan MMN; Kamran MA; Kang S; Choi HS; Jeong MY
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Dynamically Optimized SSVEP Brain-Computer Interface (BCI) Speller.
    Yin E; Zhou Z; Jiang J; Yu Y; Hu D
    IEEE Trans Biomed Eng; 2015 Jun; 62(6):1447-56. PubMed ID: 24801483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spelling with non-invasive Brain-Computer Interfaces--current and future trends.
    Cecotti H
    J Physiol Paris; 2011; 105(1-3):106-14. PubMed ID: 21911058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing BCI communication rates with dynamic stopping towards more practical use: an ALS study.
    Mainsah BO; Collins LM; Colwell KA; Sellers EW; Ryan DB; Caves K; Throckmorton CS
    J Neural Eng; 2015 Feb; 12(1):016013. PubMed ID: 25588137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A P300-Based BCI System Using Stereoelectroencephalography and Its Application in a Brain Mechanistic Study.
    Huang W; Zhang P; Yu T; Gu Z; Guo Q; Li Y
    IEEE Trans Biomed Eng; 2021 Aug; 68(8):2509-2519. PubMed ID: 33373294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Interactive Brain-Computer Interface Based on Flicker-Free Steady-State Motion Visual Evoked Potential.
    Han C; Xu G; Xie J; Chen C; Zhang S
    Sci Rep; 2018 Apr; 8(1):5835. PubMed ID: 29643430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DTU BCI speller: an SSVEP-based spelling system with dictionary support.
    Vilic A; Kjaer TW; Thomsen CE; Puthusserypady S; Sorensen HB
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2212-5. PubMed ID: 24110162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.