BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35688709)

  • 1. Optical flow estimation of coronary angiography sequences based on semi-supervised learning.
    Yin XL; Liang DX; Wang L; Xu J; Han D; Li K; Yang ZY; Xing JH; Dong JZ; Ma ZY
    Comput Biol Med; 2022 Jul; 146():105663. PubMed ID: 35688709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time coronary artery segmentation in CAG images: A semi-supervised deep learning strategy.
    Lee CK; Hong JW; Wu CL; Hou JM; Lin YA; Huang KC; Tseng PH
    Artif Intell Med; 2024 Jul; 153():102888. PubMed ID: 38781870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-supervised learning-based diffeomorphic non-rigid motion estimation for fast motion-compensated coronary MR angiography.
    Munoz C; Qi H; Cruz G; Küstner T; Botnar RM; Prieto C
    Magn Reson Imaging; 2022 Jan; 85():10-18. PubMed ID: 34655727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dense biased networks with deep priori anatomy and hard region adaptation: Semi-supervised learning for fine renal artery segmentation.
    He Y; Yang G; Yang J; Chen Y; Kong Y; Wu J; Tang L; Zhu X; Dillenseger JL; Shao P; Zhang S; Shu H; Coatrieux JL; Li S
    Med Image Anal; 2020 Jul; 63():101722. PubMed ID: 32434127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated left ventricular myocardium segmentation using 3D deeply supervised attention U-net for coronary computed tomography angiography; CT myocardium segmentation.
    Jun Guo B; He X; Lei Y; Harms J; Wang T; Curran WJ; Liu T; Jiang Zhang L; Yang X
    Med Phys; 2020 Apr; 47(4):1775-1785. PubMed ID: 32017118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutual consistency learning for semi-supervised medical image segmentation.
    Wu Y; Ge Z; Zhang D; Xu M; Zhang L; Xia Y; Cai J
    Med Image Anal; 2022 Oct; 81():102530. PubMed ID: 35839737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmentation only uses sparse annotations: Unified weakly and semi-supervised learning in medical images.
    Gao F; Hu M; Zhong ME; Feng S; Tian X; Meng X; Ni-Jia-Ti MY; Huang Z; Lv M; Song T; Zhang X; Zou X; Wu X
    Med Image Anal; 2022 Aug; 80():102515. PubMed ID: 35780593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncertainty-aware deep co-training for semi-supervised medical image segmentation.
    Zheng X; Fu C; Xie H; Chen J; Wang X; Sham CW
    Comput Biol Med; 2022 Oct; 149():106051. PubMed ID: 36055155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vessel segmentation for X-ray coronary angiography using ensemble methods with deep learning and filter-based features.
    Gao Z; Wang L; Soroushmehr R; Wood A; Gryak J; Nallamothu B; Najarian K
    BMC Med Imaging; 2022 Jan; 22(1):10. PubMed ID: 35045816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Rigid Respiratory Motion Estimation of Whole-Heart Coronary MR Images Using Unsupervised Deep Learning.
    Qi H; Fuin N; Cruz G; Pan J; Kuestner T; Bustin A; Botnar RM; Prieto C
    IEEE Trans Med Imaging; 2021 Jan; 40(1):444-454. PubMed ID: 33021937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network.
    Han L; Huang Y; Dou H; Wang S; Ahamad S; Luo H; Liu Q; Fan J; Zhang J
    Comput Methods Programs Biomed; 2020 Jun; 189():105275. PubMed ID: 31978805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BIRADS features-oriented semi-supervised deep learning for breast ultrasound computer-aided diagnosis.
    Zhang E; Seiler S; Chen M; Lu W; Gu X
    Phys Med Biol; 2020 Jun; 65(12):125005. PubMed ID: 32155605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-Supervised Multi-Organ Segmentation through Quality Assurance Supervision.
    Lee HH; Tang Y; Tang O; Xu Y; Chen Y; Gao D; Han S; Gao R; Savona MR; Abramson RG; Huo Y; Landman BA
    Proc SPIE Int Soc Opt Eng; 2020; 11313():. PubMed ID: 34040279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semi-Supervised Learning for Defect Segmentation with Autoencoder Auxiliary Module.
    Sae-Ang BI; Kumwilaisak W; Kaewtrakulpong P
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective ensemble methods for deep learning segmentation of major vessels in invasive coronary angiography.
    Park J; Kweon J; Kim YI; Back I; Chae J; Roh JH; Kang DY; Lee PH; Ahn JM; Kang SJ; Park DW; Lee SW; Lee CW; Park SW; Park SJ; Kim YH
    Med Phys; 2023 Dec; 50(12):7822-7839. PubMed ID: 37310802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A regularization-driven Mean Teacher model based on semi-supervised learning for medical image segmentation.
    Wang Q; Li X; Chen M; Chen L; Chen J
    Phys Med Biol; 2022 Aug; 67(17):. PubMed ID: 35970179
    [No Abstract]   [Full Text] [Related]  

  • 17. Medical Instrument Segmentation in 3D US by Hybrid Constrained Semi-Supervised Learning.
    Yang H; Shan C; Bouwman A; Dekker LRC; Kolen AF; de With PHN
    IEEE J Biomed Health Inform; 2022 Feb; 26(2):762-773. PubMed ID: 34347611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-supervised deep learning of brain tissue segmentation.
    Ito R; Nakae K; Hata J; Okano H; Ishii S
    Neural Netw; 2019 Aug; 116():25-34. PubMed ID: 30986724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DBCU-Net: deep learning approach for segmentation of coronary angiography images.
    Shen Y; Chen Z; Tong J; Jiang N; Ning Y
    Int J Cardiovasc Imaging; 2023 Aug; 39(8):1571-1579. PubMed ID: 37017823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.