BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35688858)

  • 1. Analysis of hollow wall effect on the fluid dynamics in the orbitally shaken bioreactors.
    Zhu L; Chen W; Zhao C
    Sci Rep; 2022 Jun; 12(1):9596. PubMed ID: 35688858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing the suitability of a baffled orbitally shaken bioreactor for cells cultivation using the computational fluid dynamics approach.
    Zhu L; Song B; Wang Z
    Biotechnol Prog; 2019 Jan; 35(1):e2746. PubMed ID: 30421865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing the fluid dynamics in the flow fields of cylindrical orbitally shaken bioreactors with different geometry sizes.
    Zhu L; Han W; Song B; Wang Z
    Eng Life Sci; 2018 Aug; 18(8):570-578. PubMed ID: 32624937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing an orbitally shaken bioreactor featuring a square vessel wall with a large circular chamfer.
    Su M; Ou Y; Fu J; Huang K; Lei J; Zhu L
    J Biotechnol; 2024 Jun; 392():69-77. PubMed ID: 38885907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of baffle structure on flow field characteristics of orbitally shaken bioreactor.
    Lu Z; Li C; Fei L; Zhang H; Pan Y
    Bioprocess Biosyst Eng; 2021 Mar; 44(3):563-573. PubMed ID: 33200292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the fluid dynamics of the inverted frustoconical shaking bioreactor.
    Zhu L; Zhang X; Cheng K; Lv Z; Zhang L; Meng Q; Yuan S; Song B; Wang Z
    Biotechnol Prog; 2018 Mar; 34(2):478-485. PubMed ID: 29314781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on fluid dynamics of the flow field and gas transfer in orbitally shaken tubes.
    Zhu LK; Song BY; Wang ZL; Monteil DT; Shen X; Hacker DL; De Jesus M; Wurm FM
    Biotechnol Prog; 2017 Jan; 33(1):192-200. PubMed ID: 27690196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational fluid dynamics analysis of mixing and gas-liquid mass transfer in wave bag bioreactor.
    Svay K; Urrea C; Shamlou PA; Zhang H
    Biotechnol Prog; 2020 Nov; 36(6):e3049. PubMed ID: 32681589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of orbitally-shaken and stirred-tank bioreactors: pH modulation and bioreactor type affect CHO cell growth and protein glycosylation.
    Monteil DT; Juvet V; Paz J; Moniatte M; Baldi L; Hacker DL; Wurm FM
    Biotechnol Prog; 2016 Sep; 32(5):1174-1180. PubMed ID: 27453130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time efficient way to calculate oxygen transfer areas and power input in cylindrical disposable shaken bioreactors.
    Klöckner W; Lattermann C; Pursche F; Büchs J; Werner S; Eibl D
    Biotechnol Prog; 2014; 30(6):1441-56. PubMed ID: 25138595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Average shear rate in airlift bioreactors: searching for the true value.
    Esperança MN; Mendes CE; Rodriguez GY; Cerri MO; Béttega R; Badino AC
    Bioprocess Biosyst Eng; 2019 Jun; 42(6):995-1008. PubMed ID: 30848359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application advances in the computational fluid dynamics in tissue engineering].
    Tang H; Wu J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2021 Jun; 35(6):776-780. PubMed ID: 34142507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CFD of mixing of multi-phase flow in a bioreactor using population balance model.
    Sarkar J; Shekhawat LK; Loomba V; Rathore AS
    Biotechnol Prog; 2016 May; 32(3):613-28. PubMed ID: 26850863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of a CFD model for cell culture bioreactors at large scale and its application in scale-up.
    Xing Z; Duane G; O'Sullivan J; Chelius C; Smith L; Borys MC; Khetan A
    J Biotechnol; 2024 May; 387():79-88. PubMed ID: 38582408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in-silico analysis of hydrodynamics and gas mass transfer characteristics in scale-down models for mammalian cell cultures.
    Anand A; McCahill M; Thomas J; Sood A; Kinross J; Dasgupta A; Rajendran A
    J Biotechnol; 2024 Jun; 388():96-106. PubMed ID: 38642816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of computational fluid dynamics as a tool for establishing process design space for mixing in a bioreactor.
    Rathore AS; Sharma C; Persad AA
    Biotechnol Prog; 2012; 28(2):382-91. PubMed ID: 22083975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational-fluid-dynamics (CFD) analysis of mixing and gas-liquid mass transfer in shake flasks.
    Zhang H; Williams-Dalson W; Keshavarz-Moore E; Shamlou PA
    Biotechnol Appl Biochem; 2005 Feb; 41(Pt 1):1-8. PubMed ID: 15310285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond heuristics: CFD-based novel multiparameter scale-up for geometrically disparate bioreactors demonstrated at industrial 2kL-10kL scales.
    Scully J; Considine LB; Smith MT; McAlea E; Jones N; O'Connell E; Madsen E; Power M; Mellors P; Crowley J; O'Leary N; Carver S; Van Plew D
    Biotechnol Bioeng; 2020 Jun; 117(6):1710-1723. PubMed ID: 32159221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational fluid dynamics (CFD) analysis of airlift bioreactor: effect of draft tube configurations on hydrodynamics, cell suspension, and shear rate.
    Pawar SB
    Bioprocess Biosyst Eng; 2018 Jan; 41(1):31-45. PubMed ID: 28929325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hydrodynamics-reaction kinetics coupled model for evaluating bioreactors derived from CFD simulation.
    Wang X; Ding J; Guo WQ; Ren NQ
    Bioresour Technol; 2010 Dec; 101(24):9749-57. PubMed ID: 20727741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.