These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35689151)

  • 41. Rearing system with nurse cows and risk factors for Cryptosporidium infection in organic dairy calves.
    Constancis C; Ravinet N; Bernard M; Lehebel A; Brisseau N; Chartier C
    Prev Vet Med; 2021 May; 190():105321. PubMed ID: 33713962
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Temporal and farm-management-associated variation in the faecal-pat prevalence of Campylobacter jejuni in ruminants.
    Grove-White DH; Leatherbarrow AJ; Cripps PJ; Diggle PJ; French NP
    Epidemiol Infect; 2010 Apr; 138(4):549-58. PubMed ID: 19845998
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Outbreak of cryptosporidiosis due to Cryptosporidium parvum subtype IIdA19G1 in neonatal calves on a dairy farm in China.
    Li N; Wang R; Cai M; Jiang W; Feng Y; Xiao L
    Int J Parasitol; 2019 Jun; 49(7):569-577. PubMed ID: 31071320
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cryptosporidium spp. and Giardia spp. in feces and water and the associated exposure factors on dairy farms.
    Toledo RD; Martins FD; Ferreira FP; de Almeida JC; Ogawa L; Dos Santos HL; Dos Santos MM; Pinheiro FA; Navarro IT; Garcia JL; Freire RL
    PLoS One; 2017; 12(4):e0175311. PubMed ID: 28403147
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Patterns of protozoan infections: spatiotemporal associations with cattle density.
    Jagai JS; Griffiths JK; Kirshen PH; Webb P; Naumova EN
    Ecohealth; 2010 Aug; 7(1):33-46. PubMed ID: 20229128
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Emergence of zoonotic Cryptosporidium parvum in China.
    Guo Y; Ryan U; Feng Y; Xiao L
    Trends Parasitol; 2022 Apr; 38(4):335-343. PubMed ID: 34972653
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Frequency and spatial distribution of environmental Campylobacter spp.
    Brown PE; Christensen OF; Clough HE; Diggle PJ; Hart CA; Hazel S; Kemp R; Leatherbarrow AJ; Moore A; Sutherst J; Turner J; Williams NJ; Wright EJ; French NP
    Appl Environ Microbiol; 2004 Nov; 70(11):6501-11. PubMed ID: 15528512
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The epidemiology of cryptosporidiosis in New Zealand, 1997-2006.
    Snel SJ; Baker MG; Venugopal K
    N Z Med J; 2009 Feb; 122(1290):47-61. PubMed ID: 19319168
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Flies, fingers, fomites, and food. Campylobacteriosis in New Zealand--food-associated rather than food-borne.
    Nelson W; Harris B
    N Z Med J; 2006 Aug; 119(1240):U2128. PubMed ID: 16924279
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cryptosporidium species and Cryptosporidium parvum subtypes in dairy calves and goat kids reared under traditional farming systems in Turkey.
    Taylan-Ozkan A; Yasa-Duru S; Usluca S; Lysen C; Ye J; Roellig DM; Feng Y; Xiao L
    Exp Parasitol; 2016 Nov; 170():16-20. PubMed ID: 27373430
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Disease surveillance in rural communities is compromised by address geocoding uncertainty: a case study of campylobacteriosis.
    Skelly C; Black W; Hearnden M; Eyles R; Weinstein P
    Aust J Rural Health; 2002 Apr; 10(2):87-93. PubMed ID: 12047502
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The seasonal variation of thermophilic campylobacters in beef cattle, dairy cattle and calves.
    Stanley KN; Wallace JS; Currie JE; Diggle PJ; Jones K
    J Appl Microbiol; 1998 Sep; 85(3):472-80. PubMed ID: 9750278
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Campylobacteriosis in New Zealand: results of a case-control study.
    Eberhart-Phillips J; Walker N; Garrett N; Bell D; Sinclair D; Rainger W; Bates M
    J Epidemiol Community Health; 1997 Dec; 51(6):686-91. PubMed ID: 9519133
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Longitudinal health outcomes for enteric pathogens in preweaned calves on Ohio dairy farms.
    Barkley JA; Pempek JA; Bowman AS; Nolting JM; Lee J; Lee S; Habing GG
    Prev Vet Med; 2021 May; 190():105323. PubMed ID: 33756433
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatial and temporal patterns of Campylobacter contamination underlying public health risk in the Taieri River, New Zealand.
    Eyles R; Niyogi D; Townsend C; Benwell G; Weinstein P
    J Environ Qual; 2003; 32(5):1820-8. PubMed ID: 14535325
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Heterogeneity in hotspots: spatio-temporal patterns in neglected parasitic diseases.
    Lal A; Hales S
    Epidemiol Infect; 2015 Feb; 143(3):631-9. PubMed ID: 24819745
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spatio-temporal analysis of differences in campylobacteriosis incidence between urban and rural areas in the Southern District Health Board, New Zealand.
    Jaksons R; Horn B; Moriarty E; Moltchanova E
    Spat Spatiotemporal Epidemiol; 2019 Nov; 31():100304. PubMed ID: 31677762
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genetic uniqueness of Cryptosporidium parvum from dairy calves in Colombia.
    Avendaño C; Ramo A; Vergara-Castiblanco C; Sánchez-Acedo C; Quílez J
    Parasitol Res; 2018 May; 117(5):1317-1323. PubMed ID: 29484550
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microbial groundwater quality and its health implications for a border-strip irrigated dairy farm catchment, South Island, New Zealand.
    Close M; Dann R; Ball A; Pirie R; Savill M; Smith Z
    J Water Health; 2008 Mar; 6(1):83-98. PubMed ID: 17998609
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Risk of infection with Cryptosporidium parvum and Cryptosporidium hominis in dairy cattle in the New York City watershed.
    Nydam DV; Lindergard G; Santucci F; Schaaf SL; Wade SE; Mohammed HO
    Am J Vet Res; 2005 Mar; 66(3):413-7. PubMed ID: 15822584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.