These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 35689517)
1. Genome sequencing reveals chromosome fusion and extensive expansion of genes related to secondary metabolism in Artemisia argyi. Miao Y; Luo D; Zhao T; Du H; Liu Z; Xu Z; Guo L; Chen C; Peng S; Li JX; Ma L; Ning G; Liu D; Huang L Plant Biotechnol J; 2022 Oct; 20(10):1902-1915. PubMed ID: 35689517 [TBL] [Abstract][Full Text] [Related]
2. A chromosome-scale genome assembly of Artemisia argyi reveals unbiased subgenome evolution and key contributions of gene duplication to volatile terpenoid diversity. Chen H; Guo M; Dong S; Wu X; Zhang G; He L; Jiao Y; Chen S; Li L; Luo H Plant Commun; 2023 May; 4(3):100516. PubMed ID: 36597358 [TBL] [Abstract][Full Text] [Related]
3. The reference genome sequence of Gao X; Ma Q; Zhang X; Wang X; Wang N; Cui Y; Li S; Ma S; Wang H; Zhang K Front Plant Sci; 2024; 15():1406592. PubMed ID: 39006964 [No Abstract] [Full Text] [Related]
4. [Genome-wide identification of bZIP family genes and screening of candidate AarbZIPs involved in terpenoid biosynthesis in Artemisia argyi]. Cheng BH; Wang MY; Wu L; Gao RR; Yin QG; Shi YH; Xiang L Zhongguo Zhong Yao Za Zhi; 2023 Oct; 48(19):5181-5194. PubMed ID: 38114108 [TBL] [Abstract][Full Text] [Related]
5. Effects of phosphorus stress on the growth and secondary metabolism of Artemisia argyi. Wang Z; Ma L; Chen C; Guo L; Guo L; Zhao T; Liu D J Plant Res; 2023 Nov; 136(6):879-889. PubMed ID: 37535187 [TBL] [Abstract][Full Text] [Related]
6. Mitochondrial genome of Artemisia argyi L. suggested conserved mitochondrial protein-coding genes among genera Artemisia, Tanacetum and Chrysanthemum. Chen H; Huang L; Yu J; Miao Y; Liu C Gene; 2023 Jun; 871():147427. PubMed ID: 37044183 [TBL] [Abstract][Full Text] [Related]
7. Integrated multi-omics analysis reveals genes involved in flavonoid biosynthesis and trichome development of Artemisia argyi. Cui Z; Huang X; Li M; Li M; Gu L; Gao L; Li C; Qin S; Liu D; Zhang Z Plant Sci; 2024 Sep; 346():112158. PubMed ID: 38880338 [TBL] [Abstract][Full Text] [Related]
8. De novo assembly and analysis of the Artemisia argyi transcriptome and identification of genes involved in terpenoid biosynthesis. Liu M; Zhu J; Wu S; Wang C; Guo X; Wu J; Zhou M Sci Rep; 2018 Apr; 8(1):5824. PubMed ID: 29643397 [TBL] [Abstract][Full Text] [Related]
9. The complete chloroplast genome sequence of medicinal plant, Kang SH; Kim K; Lee JH; Ahn BO; Won SY; Sohn SH; Kim JS Mitochondrial DNA B Resour; 2016 Mar; 1(1):257-258. PubMed ID: 33473468 [No Abstract] [Full Text] [Related]
10. Integrated metabolite profiling and transcriptome analysis reveals tissue-specific regulation of terpenoid biosynthesis in Artemisia argyi. Zhang K; Wang N; Gao X; Ma Q Genomics; 2022 Jul; 114(4):110388. PubMed ID: 35568110 [TBL] [Abstract][Full Text] [Related]
11. Study on the Regulation of Exogenous Hormones on the Absorption of Elements and the Accumulation of Secondary Metabolites in the Medicinal Plant Yang L; Yan Y; Zhao B; Xu H; Su X; Dong C Metabolites; 2022 Oct; 12(10):. PubMed ID: 36295886 [TBL] [Abstract][Full Text] [Related]
12. Full-Length Transcriptome Analysis Reveals Candidate Genes Involved in Terpenoid Biosynthesis in Cui Y; Gao X; Wang J; Shang Z; Zhang Z; Zhou Z; Zhang K Front Genet; 2021; 12():659962. PubMed ID: 34239538 [No Abstract] [Full Text] [Related]
13. Integrative analysis of metabolite and transcriptome reveals biosynthetic pathway and candidate genes for eupatilin and jaceosidin biosynthesis in Lee S; Won HJ; Ban S; Park YJ; Kim SM; Kim HS; Choi J; Kim HY; Lee JH; Jung JH Front Plant Sci; 2023; 14():1186023. PubMed ID: 37180395 [No Abstract] [Full Text] [Related]
14. [Screening of reference genes for quantitative real-time PCR in Artemisia argyi]. Yi XZ; Wu L; Xiang L; Wang MY; Chen SL; Shi YH; Liu X Zhongguo Zhong Yao Za Zhi; 2022 Feb; 47(3):659-667. PubMed ID: 35178948 [TBL] [Abstract][Full Text] [Related]
15. Morphogenesis, ultrastructure, and chemical profiling of trichomes in Artemisia argyi H. Lév. & Vaniot (Asteraceae). Cui Z; Li M; Han X; Liu H; Li C; Peng H; Liu D; Huang X; Zhang Z Planta; 2022 Apr; 255(5):102. PubMed ID: 35412154 [TBL] [Abstract][Full Text] [Related]
16. Sequence Characteristics and Phylogenetic Analysis of the Chen C; Miao Y; Luo D; Li J; Wang Z; Luo M; Zhao T; Liu D Front Plant Sci; 2022; 13():906725. PubMed ID: 35795352 [No Abstract] [Full Text] [Related]
17. Mechanisms governing the impact of nitrogen stress on the formation of secondary metabolites in Artemisia argyi leaves. Wang Z; Zhao T; Ma L; Chen C; Miao Y; Guo L; Liu D Sci Rep; 2023 Aug; 13(1):12866. PubMed ID: 37553416 [TBL] [Abstract][Full Text] [Related]
18. Intraspecific variation in genome size in Luo D; Zeng Z; Wu Z; Chen C; Zhao T; Du H; Miao Y; Liu D 3 Biotech; 2023 Feb; 13(2):57. PubMed ID: 36698769 [TBL] [Abstract][Full Text] [Related]
19. [Morphological comparison of glandular and non-glandular trichomes between Artemisia stolonifera and A. argyi]. Luo DD; Peng HS; Kang LP; Miao YH; Liu DH; Huang LQ Zhongguo Zhong Yao Za Zhi; 2021 Jul; 46(13):3319-3329. PubMed ID: 34396751 [TBL] [Abstract][Full Text] [Related]
20. Allele-aware chromosome-level genome assembly of Artemisia annua reveals the correlation between ADS expansion and artemisinin yield. Liao B; Shen X; Xiang L; Guo S; Chen S; Meng Y; Liang Y; Ding D; Bai J; Zhang D; Czechowski T; Li Y; Yao H; Ma T; Howard C; Sun C; Liu H; Liu J; Pei J; Gao J; Wang J; Qiu X; Huang Z; Li H; Yuan L; Wei J; Graham I; Xu J; Zhang B; Chen S Mol Plant; 2022 Aug; 15(8):1310-1328. PubMed ID: 35655434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]