These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 35689534)
1. Emerging Approaches for Enabling RNAi Therapeutics. Mallick AM; Tripathi A; Mishra S; Mukherjee A; Dutta C; Chatterjee A; Sinha Roy R Chem Asian J; 2022 Aug; 17(16):e202200451. PubMed ID: 35689534 [TBL] [Abstract][Full Text] [Related]
2. Molecularly engineered siRNA conjugates for tumor-targeted RNAi therapy. Lee JW; Choi J; Choi Y; Kim K; Yang Y; Kim SH; Yoon HY; Kwon IC J Control Release; 2022 Nov; 351():713-726. PubMed ID: 36152808 [TBL] [Abstract][Full Text] [Related]
3. Before and after endosomal escape: roles of stimuli-converting siRNA/polymer interactions in determining gene silencing efficiency. Kwon YJ Acc Chem Res; 2012 Jul; 45(7):1077-88. PubMed ID: 22103667 [TBL] [Abstract][Full Text] [Related]
4. Direct cytoplasmic delivery of RNAi therapeutics through a non-lysosomal pathway for enhanced gene therapy. Zhou J; Zhang J; Chen S; Lin Q; Zhu R; Wang L; Chen X; Li J; Yang H Acta Biomater; 2023 Oct; 170():401-414. PubMed ID: 37625679 [TBL] [Abstract][Full Text] [Related]
5. In vivo application of RNA interference: from functional genomics to therapeutics. Lu PY; Xie F; Woodle MC Adv Genet; 2005; 54():117-42. PubMed ID: 16096010 [TBL] [Abstract][Full Text] [Related]
6. Functional nanostructures for effective delivery of small interfering RNA therapeutics. Hong CA; Nam YS Theranostics; 2014; 4(12):1211-32. PubMed ID: 25285170 [TBL] [Abstract][Full Text] [Related]
7. RNA interference and cancer therapy. Wang Z; Rao DD; Senzer N; Nemunaitis J Pharm Res; 2011 Dec; 28(12):2983-95. PubMed ID: 22009588 [TBL] [Abstract][Full Text] [Related]
8. RNA Interference-Based Cancer Drugs: The Roadblocks, and the "Delivery" of the Promise. Das M; Musetti S; Huang L Nucleic Acid Ther; 2019 Apr; 29(2):61-66. PubMed ID: 30562145 [TBL] [Abstract][Full Text] [Related]
9. Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics. Kulkarni JA; Witzigmann D; Chen S; Cullis PR; van der Meel R Acc Chem Res; 2019 Sep; 52(9):2435-2444. PubMed ID: 31397996 [TBL] [Abstract][Full Text] [Related]
10. Nanoparticles for siRNA-Based Gene Silencing in Tumor Therapy. Babu A; Muralidharan R; Amreddy N; Mehta M; Munshi A; Ramesh R IEEE Trans Nanobioscience; 2016 Dec; 15(8):849-863. PubMed ID: 28092499 [TBL] [Abstract][Full Text] [Related]
11. Chemical and structural modifications of RNAi therapeutics. Ku SH; Jo SD; Lee YK; Kim K; Kim SH Adv Drug Deliv Rev; 2016 Sep; 104():16-28. PubMed ID: 26549145 [TBL] [Abstract][Full Text] [Related]
12. Lipid-based systemic delivery of siRNA. Tseng YC; Mozumdar S; Huang L Adv Drug Deliv Rev; 2009 Jul; 61(9):721-31. PubMed ID: 19328215 [TBL] [Abstract][Full Text] [Related]
13. A RNA nanotechnology platform for a simultaneous two-in-one siRNA delivery and its application in synergistic RNAi therapy. Jang M; Han HD; Ahn HJ Sci Rep; 2016 Aug; 6():32363. PubMed ID: 27562435 [TBL] [Abstract][Full Text] [Related]
14. Harnessing RNA interference to develop neonatal therapies: from Nobel Prize winning discovery to proof of concept clinical trials. DeVincenzo JP Early Hum Dev; 2009 Oct; 85(10 Suppl):S31-5. PubMed ID: 19833462 [TBL] [Abstract][Full Text] [Related]
15. To Conjugate or to Package? A Look at Targeted siRNA Delivery Through Folate Receptors. Salim L; Desaulniers JP Nucleic Acid Ther; 2021 Feb; 31(1):21-38. PubMed ID: 33121373 [TBL] [Abstract][Full Text] [Related]
17. Assessment of In Vivo siRNA Delivery in Cancer Mouse Models. Hatakeyama H; Wu SY; Mangala LS; Lopez-Berestein G; Sood AK Methods Mol Biol; 2016; 1402():189-197. PubMed ID: 26721492 [TBL] [Abstract][Full Text] [Related]
18. Imaging-guided delivery of RNAi for anticancer treatment. Wang J; Mi P; Lin G; Wáng YX; Liu G; Chen X Adv Drug Deliv Rev; 2016 Sep; 104():44-60. PubMed ID: 26805788 [TBL] [Abstract][Full Text] [Related]