These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 35689534)

  • 21. RNAi-based therapeutics and tumor targeted delivery in cancer.
    Kara G; Calin GA; Ozpolat B
    Adv Drug Deliv Rev; 2022 Mar; 182():114113. PubMed ID: 35063535
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNAi-based drug discovery and its application to therapeutics.
    Hokaiwado N; Takeshita F; Banas A; Ochiya T
    IDrugs; 2008 Apr; 11(4):274-8. PubMed ID: 18379962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies.
    Deng Y; Wang CC; Choy KW; Du Q; Chen J; Wang Q; Li L; Chung TK; Tang T
    Gene; 2014 Apr; 538(2):217-27. PubMed ID: 24406620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. siRNA therapeutics: a clinical reality.
    Saw PE; Song EW
    Sci China Life Sci; 2020 Apr; 63(4):485-500. PubMed ID: 31054052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNA interference therapeutics for cancer: challenges and opportunities (review).
    Bora RS; Gupta D; Mukkur TK; Saini KS
    Mol Med Rep; 2012 Jul; 6(1):9-15. PubMed ID: 22576734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gene Silencing using siRNA for Preventing Liver Ischaemia-Reperfusion Injury.
    Marinho HS; Marcelino P; Soares H; Corvo ML
    Curr Pharm Des; 2018; 24(23):2692-2700. PubMed ID: 30084326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advances in siRNA therapeutics and synergistic effect on siRNA activity using emerging dual ribose modifications.
    Gangopadhyay S; Gore KR
    RNA Biol; 2022 Jan; 19(1):452-467. PubMed ID: 35352626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Review of pH-Responsive Organic-Inorganic Hybrid Nanoparticles for RNAi-Based Therapeutics.
    Wang L; Yan Y
    Macromol Biosci; 2021 Sep; 21(9):e2100183. PubMed ID: 34160896
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review on RNAi therapy for NSCLC: Opportunities and challenges.
    Kumar V; Yadavilli S; Kannan R
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2021 Mar; 13(2):e1677. PubMed ID: 33174364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systemic Delivery of Folate-PEG siRNA Lipopolyplexes with Enhanced Intracellular Stability for In Vivo Gene Silencing in Leukemia.
    Lee DJ; Kessel E; Lehto T; Liu X; Yoshinaga N; Padari K; Chen YC; Kempter S; Uchida S; Rädler JO; Pooga M; Sheu MT; Kataoka K; Wagner E
    Bioconjug Chem; 2017 Sep; 28(9):2393-2409. PubMed ID: 28772071
    [TBL] [Abstract][Full Text] [Related]  

  • 31. siRNA release kinetics from polymeric nanoparticles correlate with RNAi efficiency and inflammation therapy via oral delivery.
    He C; Yue H; Xu L; Liu Y; Song Y; Tang C; Yin C
    Acta Biomater; 2020 Feb; 103():213-222. PubMed ID: 31812844
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The current state and future directions of RNAi-based therapeutics.
    Setten RL; Rossi JJ; Han SP
    Nat Rev Drug Discov; 2019 Jun; 18(6):421-446. PubMed ID: 30846871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo self-assembled small RNAs as a new generation of RNAi therapeutics.
    Fu Z; Zhang X; Zhou X; Ur-Rehman U; Yu M; Liang H; Guo H; Guo X; Kong Y; Su Y; Ye Y; Hu X; Cheng W; Wu J; Wang Y; Gu Y; Lu SF; Wu D; Zen K; Li J; Yan C; Zhang CY; Chen X
    Cell Res; 2021 Jun; 31(6):631-648. PubMed ID: 33782530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultra-pH-Responsive and Tumor-Penetrating Nanoplatform for Targeted siRNA Delivery with Robust Anti-Cancer Efficacy.
    Xu X; Wu J; Liu Y; Yu M; Zhao L; Zhu X; Bhasin S; Li Q; Ha E; Shi J; Farokhzad OC
    Angew Chem Int Ed Engl; 2016 Jun; 55(25):7091-7094. PubMed ID: 27140428
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overcoming obstacles to develop effective and safe siRNA therapeutics.
    Li L; Shen Y
    Expert Opin Biol Ther; 2009 May; 9(5):609-19. PubMed ID: 19392577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNA interference (RNAi)-based plasmonic nanomaterials for cancer diagnosis and therapy.
    Yoon J; Shin M; Lee JY; Lee SN; Choi JH; Choi JW
    J Control Release; 2022 Feb; 342():228-240. PubMed ID: 35016917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitation of physiological and biochemical barriers to siRNA liver delivery via lipid nanoparticle platform.
    Xu Y; Ou M; Keough E; Roberts J; Koeplinger K; Lyman M; Fauty S; Carlini E; Stern M; Zhang R; Yeh S; Mahan E; Wang Y; Slaughter D; Gindy M; Raab C; Thompson C; Hochman J
    Mol Pharm; 2014 May; 11(5):1424-34. PubMed ID: 24588618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Delivery of siRNA to the target cell cytoplasm: photochemical internalization facilitates endosomal escape and improves silencing efficiency, in vitro and in vivo.
    Oliveira S; Høgset A; Storm G; Schiffelers RM
    Curr Pharm Des; 2008; 14(34):3686-97. PubMed ID: 19075744
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Current preclinical small interfering RNA (siRNA)-based conjugate systems for RNA therapeutics.
    Lee SH; Kang YY; Jang HE; Mok H
    Adv Drug Deliv Rev; 2016 Sep; 104():78-92. PubMed ID: 26514375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lipid-Based Liquid Crystalline Nanoparticles Facilitate Cytosolic Delivery of siRNA via Structural Transformation.
    He S; Fan W; Wu N; Zhu J; Miao Y; Miao X; Li F; Zhang X; Gan Y
    Nano Lett; 2018 Apr; 18(4):2411-2419. PubMed ID: 29561622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.