These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 35689878)
1. A survey for deep reinforcement learning in markovian cyber-physical systems: Common problems and solutions. Rupprecht T; Wang Y Neural Netw; 2022 Sep; 153():13-36. PubMed ID: 35689878 [TBL] [Abstract][Full Text] [Related]
2. Deep reinforcement learning and its applications in medical imaging and radiation therapy: a survey. Xu L; Zhu S; Wen N Phys Med Biol; 2022 Nov; 67(22):. PubMed ID: 36270582 [TBL] [Abstract][Full Text] [Related]
3. Human-level control through deep reinforcement learning. Mnih V; Kavukcuoglu K; Silver D; Rusu AA; Veness J; Bellemare MG; Graves A; Riedmiller M; Fidjeland AK; Ostrovski G; Petersen S; Beattie C; Sadik A; Antonoglou I; King H; Kumaran D; Wierstra D; Legg S; Hassabis D Nature; 2015 Feb; 518(7540):529-33. PubMed ID: 25719670 [TBL] [Abstract][Full Text] [Related]
4. Deep Reinforcement Learning: A Survey. Wang X; Wang S; Liang X; Zhao D; Huang J; Xu X; Dai B; Miao Q IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):5064-5078. PubMed ID: 36170386 [TBL] [Abstract][Full Text] [Related]
5. Dynamic sparse coding-based value estimation network for deep reinforcement learning. Zhao H; Li Z; Su W; Xie S Neural Netw; 2023 Nov; 168():180-193. PubMed ID: 37757726 [TBL] [Abstract][Full Text] [Related]
6. Applying Reinforcement Learning for Enhanced Cybersecurity against Adversarial Simulation. Oh SH; Jeong MK; Kim HC; Park J Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991711 [TBL] [Abstract][Full Text] [Related]
7. LJIR: Learning Joint-Action Intrinsic Reward in cooperative multi-agent reinforcement learning. Chen Z; Luo B; Hu T; Xu X Neural Netw; 2023 Oct; 167():450-459. PubMed ID: 37683459 [TBL] [Abstract][Full Text] [Related]
8. Cooperative modular reinforcement learning for large discrete action space problem. Ming F; Gao F; Liu K; Zhao C Neural Netw; 2023 Apr; 161():281-296. PubMed ID: 36774866 [TBL] [Abstract][Full Text] [Related]
9. A Survey of Sim-to-Real Transfer Techniques Applied to Reinforcement Learning for Bioinspired Robots. Zhu W; Guo X; Owaki D; Kutsuzawa K; Hayashibe M IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3444-3459. PubMed ID: 34587101 [TBL] [Abstract][Full Text] [Related]
10. Mobile Robot Application with Hierarchical Start Position DQN. Erkan E; Arserim MA Comput Intell Neurosci; 2022; 2022():4115767. PubMed ID: 36105641 [TBL] [Abstract][Full Text] [Related]
11. Deep Reinforcement Learning for Cyber Security. Nguyen TT; Reddi VJ IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):3779-3795. PubMed ID: 34723814 [TBL] [Abstract][Full Text] [Related]
12. Understanding via Exploration: Discovery of Interpretable Features With Deep Reinforcement Learning. Wei J; Qiu Z; Wang F; Lin W; Gui N; Gui W IEEE Trans Neural Netw Learn Syst; 2024 Feb; 35(2):1696-1707. PubMed ID: 35763482 [TBL] [Abstract][Full Text] [Related]
13. MuDE: Multi-agent decomposed reward-based exploration. Yoo B; Yi S; Kim H; Shin Y; Han R; Seo S; Song HJ; Chung E; Yang J Neural Netw; 2024 Nov; 179():106565. PubMed ID: 39111159 [TBL] [Abstract][Full Text] [Related]
14. A reinforcement learning algorithm acquires demonstration from the training agent by dividing the task space. Zu L; He X; Yang J; Liu L; Wang W Neural Netw; 2023 Jul; 164():419-427. PubMed ID: 37187108 [TBL] [Abstract][Full Text] [Related]
15. Learning obstacle avoidance and predation in complex reef environments with deep reinforcement learning. Hou J; He C; Li T; Zhang C; Zhou Q Bioinspir Biomim; 2024 Aug; 19(5):. PubMed ID: 39025108 [TBL] [Abstract][Full Text] [Related]
16. Overcoming Challenges of Applying Reinforcement Learning for Intelligent Vehicle Control. Pina R; Tibebu H; Hook J; De Silva V; Kondoz A Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883832 [TBL] [Abstract][Full Text] [Related]
17. Modular deep reinforcement learning from reward and punishment for robot navigation. Wang J; Elfwing S; Uchibe E Neural Netw; 2021 Mar; 135():115-126. PubMed ID: 33383526 [TBL] [Abstract][Full Text] [Related]
18. Discovering diverse solutions in deep reinforcement learning by maximizing state-action-based mutual information. Osa T; Tangkaratt V; Sugiyama M Neural Netw; 2022 Aug; 152():90-104. PubMed ID: 35523085 [TBL] [Abstract][Full Text] [Related]
19. Dynamic Spectrum Sharing Based on Deep Reinforcement Learning in Mobile Communication Systems. Liu S; Pan C; Zhang C; Yang F; Song J Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904826 [TBL] [Abstract][Full Text] [Related]
20. Deep Reinforcement Learning for Multiagent Systems: A Review of Challenges, Solutions, and Applications. Nguyen TT; Nguyen ND; Nahavandi S IEEE Trans Cybern; 2020 Sep; 50(9):3826-3839. PubMed ID: 32203045 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]