BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35689932)

  • 21. DNA-Functionalized Dye-Loaded Polymeric Nanoparticles: Ultrabright FRET Platform for Amplified Detection of Nucleic Acids.
    Melnychuk N; Klymchenko AS
    J Am Chem Soc; 2018 Aug; 140(34):10856-10865. PubMed ID: 30067022
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a new rhodamine-based FRET platform and its application as a Cu2+ probe.
    Guan X; Lin W; Huang W
    Org Biomol Chem; 2014 Jun; 12(23):3944-9. PubMed ID: 24805088
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FRET pumping of rhodamine-based probe in light-harvesting nanoparticles for highly sensitive detection of Cu
    Mironenko AY; Tutov MV; Chepak AK; Bratskaya SY
    Anal Chim Acta; 2022 Oct; 1229():340388. PubMed ID: 36156238
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Smartphone-assisted detection of nucleic acids by light-harvesting FRET-based nanoprobe.
    Severi C; Melnychuk N; Klymchenko AS
    Biosens Bioelectron; 2020 Nov; 168():112515. PubMed ID: 32862092
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal ion induced FRET OFF-ON in tren/dansyl-appended rhodamine.
    Lee MH; Kim HJ; Yoon S; Park N; Kim JS
    Org Lett; 2008 Jan; 10(2):213-6. PubMed ID: 18078343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly sensitive fluorescence detection of glycoprotein based on energy transfer between CuInS2 QDs and rhodamine B.
    Gao X; Li D; Tong Y; Ge D; Tang Y; Zhang D; Li J
    Luminescence; 2015 Dec; 30(8):1389-94. PubMed ID: 25866153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of Fluorescence Resonance Energy Transfer between Fluorescein and Rhodamine 6G.
    Saha J; Datta Roy A; Dey D; Chakraborty S; Bhattacharjee D; Paul PK; Hussain SA
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():143-9. PubMed ID: 25956326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.
    Yuan L; Lin W; Zheng K; Zhu S
    Acc Chem Res; 2013 Jul; 46(7):1462-73. PubMed ID: 23419062
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lifetime-based sensing of the hyaluronidase using fluorescein labeled hyaluronic acid.
    Fudala R; Mummert ME; Gryczynski Z; Rich R; Borejdo J; Gryczynski I
    J Photochem Photobiol B; 2012 Jan; 106(1):69-73. PubMed ID: 22082776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Convenient and ultra-sensitive fluorescence detection of bovine serum albumin by using Rhodamine-6G modified gold nanoparticles in biological samples.
    Verma VK; Tapadia K; Maharana T; Sharma A
    Luminescence; 2018 Dec; 33(8):1408-1414. PubMed ID: 30362269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visualizing Hg2+ ions in living cells using a FRET-based fluorescent sensor.
    Zhou Y; Chu K; Zhen H; Fang Y; Yao C
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 106():197-202. PubMed ID: 23380148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NIR- and FRET-based sensing of Cu2+ and S2- in physiological conditions and in live cells.
    Kar C; Adhikari MD; Ramesh A; Das G
    Inorg Chem; 2013 Jan; 52(2):743-52. PubMed ID: 23302031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An efficient turn-on fluorescence biosensor for the detection of glutathione based on FRET between N,S dual-doped carbon dots and gold nanoparticles.
    Dong W; Wang R; Gong X; Dong C
    Anal Bioanal Chem; 2019 Oct; 411(25):6687-6695. PubMed ID: 31407048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Double S-scheme Cu
    Tian J; Guan C; Liu C; Fan J; Zhu Y; Sun T; Liu E
    J Colloid Interface Sci; 2024 Jul; 666():481-495. PubMed ID: 38613971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FRET-based fluorescent nanoprobe platform for sorting of active microorganisms by functional properties.
    Luo Y; Liu F; Li E; Fang Y; Zhao G; Dai X; Li J; Wang B; Xu M; Liao B; Sun G
    Biosens Bioelectron; 2020 Jan; 148():111832. PubMed ID: 31706173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Near-infrared fluorescent probes based on TBET and FRET rhodamine acceptors with different p
    Wang J; Xia S; Bi J; Zhang Y; Fang M; Luck RL; Zeng Y; Chen TH; Lee HM; Liu H
    J Mater Chem B; 2019 Jan; 7(2):198-209. PubMed ID: 31367383
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One-pot synthesis of hyaluronic acid-coated gold nanoparticles as SERS substrate for the determination of hyaluronidase activity.
    Wang W; Li D; Zhang Y; Zhang W; Ma P; Wang X; Song D; Sun Y
    Mikrochim Acta; 2020 Oct; 187(11):604. PubMed ID: 33037925
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of hyaluronidase activity using fluorescein labeled hyaluronic acid and Fluorescence Correlation Spectroscopy.
    Rich RM; Mummert M; Foldes-Papp Z; Gryczynski Z; Borejdo J; Gryczynski I; Fudala R
    J Photochem Photobiol B; 2012 Nov; 116():7-12. PubMed ID: 23018154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cationic conjugated polymer/fluoresceinamine-hyaluronan complex for sensitive fluorescence detection of CD44 and tumor-targeted cell imaging.
    Huang Y; Yao X; Zhang R; Ouyang L; Jiang R; Liu X; Song C; Zhang G; Fan Q; Wang L; Huang W
    ACS Appl Mater Interfaces; 2014; 6(21):19144-53. PubMed ID: 25278260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient fluorescence resonance energy transfer-based ratiometric fluorescent cellular imaging probe for Zn(2+) using a rhodamine spirolactam as a trigger.
    Han ZX; Zhang XB; Li Z; Gong YJ; Wu XY; Jin Z; He CM; Jian LX; Zhang J; Shen GL; Yu RQ
    Anal Chem; 2010 Apr; 82(8):3108-13. PubMed ID: 20334436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.