These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35689932)

  • 41. A FRET-based near-infrared ratiometric fluorescent probe for detection of mitochondria biothiol.
    Wang L; Wang J; Xia S; Wang X; Yu Y; Zhou H; Liu H
    Talanta; 2020 Nov; 219():121296. PubMed ID: 32887038
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Controllable release ratiometric fluorescent sensor for hyaluronidase via the combination of Cu
    Huang X; Liu Q; Wu C; Lin Z; Huang A; Qiu B
    Talanta; 2022 Jan; 237():122961. PubMed ID: 34736686
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phospholipid-modified upconversion nanoprobe for ratiometric fluorescence detection and imaging of phospholipase D in cell lysate and in living cells.
    Cen Y; Wu YM; Kong XJ; Wu S; Yu RQ; Chu X
    Anal Chem; 2014 Jul; 86(14):7119-27. PubMed ID: 24939283
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sensitive detection of telomerase activity in cells using a DNA-based fluorescence resonance energy transfer nanoprobe.
    Yang G; Zhang Q; Ma L; Zheng Y; Tian F; Li H; Zhang P; Qu LL
    Anal Chim Acta; 2020 Feb; 1098():133-139. PubMed ID: 31948576
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gold-nanoparticle-based fluorescent "turn-on" sensor for selective and sensitive detection of dimethoate.
    Hung SH; Lee JY; Hu CC; Chiu TC
    Food Chem; 2018 Sep; 260():61-65. PubMed ID: 29699682
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ratiometric fluorescent biosensor for hyaluronidase with hyaluronan as both nanoparticle scaffold and substrate for enzymatic reaction.
    Xie H; Zeng F; Wu S
    Biomacromolecules; 2014 Sep; 15(9):3383-9. PubMed ID: 25068551
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A ratiometric fluorescent probe based on boron dipyrromethene and rhodamine Förster resonance energy transfer platform for hypochlorous acid and its application in living cells.
    Liu Y; Zhao ZM; Miao JY; Zhao BX
    Anal Chim Acta; 2016 May; 921():77-83. PubMed ID: 27126792
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A dansyl-rhodamine ratiometric fluorescent probe for Hg2+ based on FRET mechanism.
    Xie P; Guo F; Wang L; Yang S; Yao D; Yang G
    J Fluoresc; 2015 Mar; 25(2):319-25. PubMed ID: 25597044
    [TBL] [Abstract][Full Text] [Related]  

  • 49. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.
    Mahajan PG; Bhopate DP; Kolekar GB; Patil SR
    J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fluorescence resonance energy transfer dye-labeled probe for fluorescence-enhanced DNA detection: an effective strategy to greatly improve discrimination ability toward single-base mismatch.
    Li H; Luo Y; Sun X
    Biosens Bioelectron; 2011 Sep; 27(1):167-71. PubMed ID: 21783356
    [TBL] [Abstract][Full Text] [Related]  

  • 51. FRET-based ratiometric detection of Hg2+ and biothiols using naphthalimide-rhodamine dyads.
    Luxami V; Verma M; Rani R; Paul K; Kumar S
    Org Biomol Chem; 2012 Oct; 10(40):8076-81. PubMed ID: 22932925
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lignosulfonate: A Convenient Fluorescence Resonance Energy Transfer Platform for the Construction of a Ratiometric Fluorescence pH-Sensing Probe.
    Xue Y; Wan Z; Ouyang X; Qiu X
    J Agric Food Chem; 2019 Jan; 67(4):1044-1051. PubMed ID: 30624925
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Fluorescence quenching assay of ultratrace horseradish peroxidase using rhodamine dye].
    Ma WS; Huang GX; Liang AH; Jiang ZL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):759-61. PubMed ID: 19455817
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reaction-complexation coupling between an enzyme and its polyelectrolytic substrate: determination of the dissociation constant of the hyaluronidase-hyaluronan complex from the hyaluronidase substrate-dependence.
    Lenormand H; Amar-Bacoup F; Vincent JC
    Biophys Chem; 2013; 175-176():63-70. PubMed ID: 23523464
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gold nanoparticle-enzyme conjugates based FRET for highly sensitive determination of hydrogen peroxide, glucose and uric acid using tyramide reaction.
    Huang X; Lan T; Zhang B; Ren J
    Analyst; 2012 Aug; 137(16):3659-66. PubMed ID: 22745932
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A study of the interaction between rhodamine 6g and hydroxy propyl β-cyclodextrin by steady state fluorescence.
    Bakkialakshmi S; Menaka T
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 81(1):8-13. PubMed ID: 21724451
    [TBL] [Abstract][Full Text] [Related]  

  • 57. FRET-based ratiometric detection system for mercury ions in water with polymeric particles as scaffolds.
    Ma C; Zeng F; Huang L; Wu S
    J Phys Chem B; 2011 Feb; 115(5):874-82. PubMed ID: 21250732
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel dual-switch fluorescent probe for Cr(III) ion based on PET-FRET processes.
    Hu F; Zheng B; Wang D; Liu M; Du J; Xiao D
    Analyst; 2014 Jul; 139(14):3607-13. PubMed ID: 24875402
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A rhodamine-based "turn-on" fluorescent chemodosimeter for Cu2+ and its application in living cell imaging.
    Huang L; Hou FP; Xi P; Bai D; Xu M; Li Z; Xie G; Shi Y; Liu H; Zeng Z
    J Inorg Biochem; 2011 Jun; 105(6):800-5. PubMed ID: 21497578
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Development of Novel Dark Quenchers and Their Application to Imaging Probes].
    Hanaoka K
    Yakugaku Zasshi; 2019; 139(2):277-283. PubMed ID: 30713240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.