BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35689979)

  • 1. Deep learning-based in vivo dose verification from proton-induced secondary-electron-bremsstrahlung images with various count level.
    Yabe T; Yamaguchi M; Liu CC; Toshito T; Kawachi N; Yamamoto S
    Phys Med; 2022 Jul; 99():130-139. PubMed ID: 35689979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dose image prediction for range and width verifications from carbon ion-induced secondary electron bremsstrahlung x-rays using deep learning workflow.
    Yamaguchi M; Liu CC; Huang HM; Yabe T; Akagi T; Kawachi N; Yamamoto S
    Med Phys; 2020 Aug; 47(8):3520-3532. PubMed ID: 32335924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning approach for converting prompt gamma images to proton dose distributions: A Monte Carlo simulation study.
    Liu CC; Huang HM
    Phys Med; 2020 Jan; 69():110-119. PubMed ID: 31869575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning proton beam range estimation model for quality assurance based on two-dimensional scintillated light distributions in simulations.
    Lee E; Cho B; Kwak J; Jeong C; Park MJ; Kim SW; Song SY; Goh Y
    Med Phys; 2023 Nov; 50(11):7203-7213. PubMed ID: 37517077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A plan verification platform for online adaptive proton therapy using deep learning-based Monte-Carlo denoising.
    Zhang G; Chen X; Dai J; Men K
    Phys Med; 2022 Nov; 103():18-25. PubMed ID: 36201903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A feasibility study of enhanced prompt gamma imaging for range verification in proton therapy using deep learning.
    Jiang Z; Polf JC; Barajas CA; Gobbert MK; Ren L
    Phys Med Biol; 2023 Mar; 68(7):. PubMed ID: 36848674
    [No Abstract]   [Full Text] [Related]  

  • 7. Development of a low-energy x-ray camera for the imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation for range estimation.
    Ando K; Yamaguchi M; Yamamoto S; Toshito T; Kawachi N
    Phys Med Biol; 2017 Jun; 62(12):5006-5020. PubMed ID: 28531093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy.
    Yabe T; Yamamoto S; Oda M; Mori K; Toshito T; Akagi T
    Med Phys; 2020 Sep; 47(9):3882-3891. PubMed ID: 32623747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small beams, fast predictions: a comparison of machine learning dose prediction models for proton minibeam therapy.
    Mentzel F; Kröninger K; Lerch M; Nackenhorst O; Rosenfeld A; Tsoi AC; Weingarten J; Hagenbuchner M; Guatelli S
    Med Phys; 2022 Dec; 49(12):7791-7801. PubMed ID: 36309820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a YAP(Ce) camera for the imaging of secondary electron bremsstrahlung x-ray emitted during carbon-ion irradiation toward the use of clinical conditions.
    Yamamoto S; Yamaguchi M; Akagi T; Sasano M; Kawachi N
    Phys Med Biol; 2019 Jul; 64(13):135019. PubMed ID: 31071695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Millisecond speed deep learning based proton dose calculation with Monte Carlo accuracy.
    Pastor-Serrano O; Perkó Z
    Phys Med Biol; 2022 May; 67(10):. PubMed ID: 35447605
    [No Abstract]   [Full Text] [Related]  

  • 12. Mitigating inherent noise in Monte Carlo dose distributions using dilated U-Net.
    Javaid U; Souris K; Dasnoy D; Huang S; Lee JA
    Med Phys; 2019 Dec; 46(12):5790-5798. PubMed ID: 31600829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct mapping from PET coincidence data to proton-dose and positron activity using a deep learning approach.
    Rahman AU; Nemallapudi MV; Chou CY; Lin CH; Lee SC
    Phys Med Biol; 2022 Sep; 67(18):. PubMed ID: 35981556
    [No Abstract]   [Full Text] [Related]  

  • 14. Imaging of monochromatic beams by measuring secondary electron bremsstrahlung for carbon-ion therapy using a pinhole x-ray camera.
    Yamaguchi M; Nagao Y; Ando K; Yamamoto S; Sakai M; Parajuli RK; Arakawa K; Kawachi N
    Phys Med Biol; 2018 Feb; 63(4):045016. PubMed ID: 29235991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Denoising PET images for proton therapy using a residual U-net.
    Sano A; Nishio T; Masuda T; Karasawa K
    Biomed Phys Eng Express; 2021 Feb; 7(2):. PubMed ID: 33540390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technical Note: Machine learning approaches for range and dose verification in proton therapy using proton-induced positron emitters.
    Li Z; Wang Y; Yu Y; Fan K; Xing L; Peng H
    Med Phys; 2019 Dec; 46(12):5748-5757. PubMed ID: 31529506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy Spectra of Protons and Generated Secondary Electrons around the Bragg Peak in Materials of Interest in Proton Therapy.
    de Vera P; Abril I; Garcia-Molina R
    Radiat Res; 2018 Sep; 190(3):282-297. PubMed ID: 29995591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-stage ionoacoustic range verification leveraging Monte Carlo and acoustic simulations to stably account for tissue inhomogeneity and accelerator-specific time structure - A simulation study.
    Patch SK; Hoff DEM; Webb TB; Sobotka LG; Zhao T
    Med Phys; 2018 Feb; 45(2):783-793. PubMed ID: 29159885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calibrated uncertainty estimation for interpretable proton computed tomography image correction using Bayesian deep learning.
    Nomura Y; Tanaka S; Wang J; Shirato H; Shimizu S; Xing L
    Phys Med Biol; 2021 Mar; 66(6):065029. PubMed ID: 33626513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmarking a GATE/Geant4 Monte Carlo model for proton beams in magnetic fields.
    Padilla-Cabal F; Alejandro Fragoso J; Franz Resch A; Georg D; Fuchs H
    Med Phys; 2020 Jan; 47(1):223-233. PubMed ID: 31661559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.