BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35690208)

  • 1. Assimilation of blended in situ-satellite snow water equivalent into the National Water Model for improving hydrologic simulation in two US river basins.
    Gan Y; Zhang Y; Liu Y; Kongoli C; Grassotti C
    Sci Total Environ; 2022 Sep; 838(Pt 4):156567. PubMed ID: 35690208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate change impacts on streamflow and subbasin-scale hydrology in the Upper Colorado River Basin.
    Ficklin DL; Stewart IT; Maurer EP
    PLoS One; 2013; 8(8):e71297. PubMed ID: 23977011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating Groundwater-Streamflow Connections in the Upper Colorado River Basin.
    Tran H; Zhang J; Cohard JM; Condon LE; Maxwell RM
    Ground Water; 2020 May; 58(3):392-405. PubMed ID: 32181894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying snowfall elevation patterns by assimilating satellite-based snow depth retrievals.
    Girotto M; Formetta G; Azimi S; Bachand C; Cowherd M; De Lannoy G; Lievens H; Modanesi S; Raleigh MS; Rigon R; Massari C
    Sci Total Environ; 2024 Jan; 906():167312. PubMed ID: 37758128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrological modelling of a snow/glacier-fed western Himalayan basin to simulate the current and future streamflows under changing climate scenarios.
    Shukla S; Jain SK; Kansal ML
    Sci Total Environ; 2021 Nov; 795():148871. PubMed ID: 34378536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the snow cover dynamics and its relationship with different hydro-climatic characteristics in Upper Ganges river basin and its sub-basins.
    Thapa S; Zhang F; Zhang H; Zeng C; Wang L; Xu CY; Thapa A; Nepal S
    Sci Total Environ; 2021 Nov; 793():148648. PubMed ID: 34351296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.
    Wang T; Peng S; Krinner G; Ryder J; Li Y; Dantec-Nédélec S; Ottlé C
    PLoS One; 2015; 10(9):e0137275. PubMed ID: 26366564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Simulated Snow and Snowmelt Timing in the Community Land Model Using Satellite-based Products and Streamflow Observations.
    Toure AM; Luojus K; Rodell M; Beaudoing H; Getirana A
    J Adv Model Earth Syst; 2018 Nov; 10(11):2933-2951. PubMed ID: 30949292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid global gridded snow products and conceptual simulations of distributed snow budget: evaluation of different scenarios in a mountainous watershed.
    Taheri M; Anboohi MS; Mousavi R; Nasseri M
    Front Earth Sci; 2022 Oct; ():1-16. PubMed ID: 36258894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Streamflow seasonality in a snow-dwindling world.
    Han J; Liu Z; Woods R; McVicar TR; Yang D; Wang T; Hou Y; Guo Y; Li C; Yang Y
    Nature; 2024 May; 629(8014):1075-1081. PubMed ID: 38811711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First snow, glacier and groundwater contribution quantification in the upper Mendoza River basin using stable water isotopes.
    Crespo SA; Fernandoy F; Cara L; Klarian S; Lavergne C
    Isotopes Environ Health Stud; 2020; 56(5-6):566-585. PubMed ID: 32744912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating remotely sensed surface water extent into continental scale hydrology.
    Revilla-Romero B; Wanders N; Burek P; Salamon P; de Roo A
    J Hydrol (Amst); 2016 Dec; 543(Pt B):659-670. PubMed ID: 28111480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and temporal patterns of precipitation and stream flow variations in Tigris-Euphrates river basin.
    Daggupati P; Srinivasan R; Ahmadi M; Verma D
    Environ Monit Assess; 2017 Jan; 189(2):50. PubMed ID: 28058613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solving Challenges of Assimilating Microwave Remote Sensing Signatures With a Physical Model to Estimate Snow Water Equivalent.
    Merkouriadi I; Lemmetyinen J; Liston GE; Pulliainen J
    Water Resour Res; 2021 Nov; 57(11):e2021WR030119. PubMed ID: 34824483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in Projected Spatial and Seasonal Groundwater Recharge in the Upper Colorado River Basin.
    Tillman FD; Gangopadhyay S; Pruitt T
    Ground Water; 2017 Jul; 55(4):506-518. PubMed ID: 28208211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying and estimating the sources of river flow in the cold arid desert environment of Upper Indus River Basin (UIRB), western Himalayas.
    Lone SA; Jeelani G; Padhya V; Deshpande RD
    Sci Total Environ; 2022 Aug; 832():154964. PubMed ID: 35367560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulating the hydrological regime of the snow fed and glaciarised Gilgit Basin in the Upper Indus using global precipitation products and a data parsimonious precipitation-runoff model.
    Nazeer A; Maskey S; Skaugen T; McClain ME
    Sci Total Environ; 2022 Jan; 802():149872. PubMed ID: 34461480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Snowpacks decrease and streamflows shift across the eastern US as winters warm.
    Ford CM; Kendall AD; Hyndman DW
    Sci Total Environ; 2021 Nov; 793():148483. PubMed ID: 34182450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operational Hydrological Forecasting during the IPHEx-IOP Campaign - Meet the Challenge.
    Tao J; Wu D; Gourley J; Zhang SQ; Crow W; Peters-Lidard C; Barros AP
    J Hydrol (Amst); 2016 Oct; 541(Pt A):434-456. PubMed ID: 30377386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended seasonal prediction of spring precipitation over the Upper Colorado River Basin.
    Zhao S; Fu R; Anderson ML; Chakraborty S; Jiang JH; Su H; Gu Y
    Clim Dyn; 2023; 60(5-6):1815-1829. PubMed ID: 36936712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.