These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35690614)

  • 41. Robust and bias-free localization of individual fixed dipole emitters achieving the Cramér Rao bound for applications in cryo-single molecule localization microscopy.
    Hinterer F; Schneider MC; Hubmer S; López-Martinez M; Zelger P; Jesacher A; Ramlau R; Schütz GJ
    PLoS One; 2022; 17(2):e0263500. PubMed ID: 35120171
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photon-counting normalized metal artifact reduction (NMAR) in diagnostic CT.
    Byl A; Klein L; Sawall S; Heinze S; Schlemmer HP; Kachelrieß M
    Med Phys; 2021 Jul; 48(7):3572-3582. PubMed ID: 33973237
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system.
    Seo Y; Wong KH; Sun M; Franc BL; Hawkins RA; Hasegawa BH
    J Nucl Med; 2005 May; 46(5):868-77. PubMed ID: 15872362
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient low-dose CT artifact mitigation using an artifact-matched prior scan.
    Xu W; Mueller K
    Med Phys; 2012 Aug; 39(8):4748-60. PubMed ID: 22894400
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The HURRA filter: An easy method to eliminate collimator artifacts in high-energy gamma camera images.
    Perez-Garcia H; Barquero R
    Rev Esp Med Nucl Imagen Mol; 2017; 36(1):27-36. PubMed ID: 27436701
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative super-resolution single molecule microscopy dataset of YFP-tagged growth factor receptors.
    Lukeš T; Pospíšil J; Fliegel K; Lasser T; Hagen GM
    Gigascience; 2018 Mar; 7(3):1-10. PubMed ID: 29361123
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An algorithm for automated detection, localization and measurement of local calcium signals from camera-based imaging.
    Ellefsen KL; Settle B; Parker I; Smith IF
    Cell Calcium; 2014 Sep; 56(3):147-56. PubMed ID: 25047761
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software.
    Sage D; Pham TA; Babcock H; Lukes T; Pengo T; Chao J; Velmurugan R; Herbert A; Agrawal A; Colabrese S; Wheeler A; Archetti A; Rieger B; Ober R; Hagen GM; Sibarita JB; Ries J; Henriques R; Unser M; Holden S
    Nat Methods; 2019 May; 16(5):387-395. PubMed ID: 30962624
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Superior performance with sCMOS over EMCCD in super-resolution optical fluctuation imaging.
    Chen X; Zeng Z; Li R; Xue B; Xi P; Sun Y
    J Biomed Opt; 2016 Jun; 21(6):66007. PubMed ID: 27281064
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reduction of ring artifacts in CBCT: detection and correction of pixel gain variations in flat panel detectors.
    Altunbas C; Lai CJ; Zhong Y; Shaw CC
    Med Phys; 2014 Sep; 41(9):091913. PubMed ID: 25186400
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Correcting chromatic offset in multicolor super-resolution localization microscopy.
    Erdelyi M; Rees E; Metcalf D; Schierle GS; Dudas L; Sinko J; Knight AE; Kaminski CF
    Opt Express; 2013 May; 21(9):10978-88. PubMed ID: 23669954
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Resonant Electro-Optic Imaging for Microscopy at Nanosecond Resolution.
    Bowman AJ; Kasevich MA
    ACS Nano; 2021 Oct; 15(10):16043-16054. PubMed ID: 34546704
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Performance of scientific cameras with different sensor types in measuring dynamic processes in fluorescence microscopy.
    Jung J; Weisenburger S; Albert S; Gilbert DF; Friedrich O; Eulenburg V; Kornhuber J; Groemer TW
    Microsc Res Tech; 2013 Aug; 76(8):835-43. PubMed ID: 23733589
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deep learning massively accelerates super-resolution localization microscopy.
    Ouyang W; Aristov A; Lelek M; Hao X; Zimmer C
    Nat Biotechnol; 2018 Jun; 36(5):460-468. PubMed ID: 29658943
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Noise-induced systematic errors in ratio imaging: serious artefacts and correction with multi-resolution denoising.
    Wang YL
    J Microsc; 2007 Nov; 228(Pt 2):123-31. PubMed ID: 17970912
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single-Molecule Spectroscopy and Super-Resolution Mapping of Physicochemical Parameters in Living Cells.
    Steves MA; He C; Xu K
    Annu Rev Phys Chem; 2024 Jun; 75(1):163-183. PubMed ID: 38360526
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Camera technologies for low light imaging: overview and relative advantages.
    Moomaw B
    Methods Cell Biol; 2013; 114():243-83. PubMed ID: 23931510
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantitative imaging with a mobile phone microscope.
    Skandarajah A; Reber CD; Switz NA; Fletcher DA
    PLoS One; 2014; 9(5):e96906. PubMed ID: 24824072
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fluorescence microscopy: established and emerging methods, experimental strategies, and applications in immunology.
    Petty HR
    Microsc Res Tech; 2007 Aug; 70(8):687-709. PubMed ID: 17393476
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Expectation maximization based framework for joint localization and parameter estimation in single particle tracking from segmented images.
    Lin Y; Andersson SB
    PLoS One; 2021; 16(5):e0243115. PubMed ID: 34019541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.