These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35690826)

  • 41. [Maize seed identification using hyperspectral imaging and SVDD algorithm].
    Zhu QB; Feng ZL; Huang M; Zhu X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Feb; 33(2):517-21. PubMed ID: 23697145
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid identification of the variety of maize seeds based on near-infrared spectroscopy coupled with locally linear embedding.
    Liu S; Chen Z; Jiao F
    Appl Opt; 2022 Mar; 61(7):1704-1710. PubMed ID: 35297847
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Computational approaches for the classification of seed storage proteins.
    Radhika V; Rao VS
    J Food Sci Technol; 2015 Jul; 52(7):4246-55. PubMed ID: 26139889
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [A new discrimination method of maize seed varieties based on near-infrared spectroscopy].
    Guo TT; Wang SJ; Wang HW; Hu HX; An D; Wu WJ; Xia W; Zhai YF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Sep; 30(9):2372-6. PubMed ID: 21105398
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rice seed vigor detection based on near-infrared hyperspectral imaging and deep transfer learning.
    Qi H; Huang Z; Sun Z; Tang Q; Zhao G; Zhu X; Zhang C
    Front Plant Sci; 2023; 14():1283921. PubMed ID: 37936942
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Non-Destructive Trace Detection of Explosives Using Pushbroom Scanning Hyperspectral Imaging System.
    Chaudhary S; Ninsawat S; Nakamura T
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30597901
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hyperspectral prediction of sugarbeet seed germination based on gauss kernel SVM.
    Yang J; Sun L; Xing W; Feng G; Bai H; Wang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 253():119585. PubMed ID: 33662700
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Deep Learning Image System for Classifying High Oleic Sunflower Seed Varieties.
    Barrio-Conde M; Zanella MA; Aguiar-Perez JM; Ruiz-Gonzalez R; Gomez-Gil J
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904675
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Classification of multi-year and multi-variety pumpkin seeds using hyperspectral imaging technology and three-dimensional convolutional neural network.
    Li X; Feng X; Fang H; Yang N; Yang G; Yu Z; Shen J; Geng W; He Y
    Plant Methods; 2023 Aug; 19(1):82. PubMed ID: 37563698
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of Joint Skewness Algorithm to Select Optimal Wavelengths of Hyperspectral Image for Maize Seed Classification YANG Sai, ZHU Qi-bing*, HUANG Min.
    Yang S; Zhu QB; Huang M
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Mar; 37(3):990-6. PubMed ID: 30160845
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of Rice Varieties and Transgenic Characteristics Based on Near-Infrared Diffuse Reflectance Spectroscopy and Chemometrics.
    Hao Y; Geng P; Wu W; Wen Q; Rao M
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31847134
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Accurate machine learning-based germination detection, prediction and quality assessment of three grain crops.
    Genze N; Bharti R; Grieb M; Schultheiss SJ; Grimm DG
    Plant Methods; 2020 Dec; 16(1):157. PubMed ID: 33353559
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Discrimination of
    Wu N; Zhang C; Bai X; Du X; He Y
    Molecules; 2018 Oct; 23(11):. PubMed ID: 30384477
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DeepCob: precise and high-throughput analysis of maize cob geometry using deep learning with an application in genebank phenomics.
    Kienbaum L; Correa Abondano M; Blas R; Schmid K
    Plant Methods; 2021 Aug; 17(1):91. PubMed ID: 34419093
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Blood Stain Classification with Hyperspectral Imaging and Deep Neural Networks.
    Książek K; Romaszewski M; Głomb P; Grabowski B; Cholewa M
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33233358
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Application of Visible/Infrared Spectroscopy and Hyperspectral Imaging With Machine Learning Techniques for Identifying Food Varieties and Geographical Origins.
    Feng L; Wu B; Zhu S; He Y; Zhang C
    Front Nutr; 2021; 8():680357. PubMed ID: 34222304
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hyperspectral imaging for the detection of plant pathogens in seeds: recent developments and challenges.
    Ferreira LDC; Carvalho ICB; Jorge LAC; Quezado-Duval AM; Rossato M
    Front Plant Sci; 2024; 15():1387925. PubMed ID: 38681215
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Detection of Pesticide Residue Level in Grape Using Hyperspectral Imaging with Machine Learning.
    Ye W; Yan T; Zhang C; Duan L; Chen W; Song H; Zhang Y; Xu W; Gao P
    Foods; 2022 May; 11(11):. PubMed ID: 35681359
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping.
    Feng X; Zhan Y; Wang Q; Yang X; Yu C; Wang H; Tang Z; Jiang D; Peng C; He Y
    Plant J; 2020 Mar; 101(6):1448-1461. PubMed ID: 31680357
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Rapid identification of Coix seed varieties by near infrared spectroscopy].
    Liu X; Mao DZ; Wang ZW; Yang YJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 May; 34(5):1259-63. PubMed ID: 25095418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.