BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35691126)

  • 1. Critical aspects of Raman spectroscopy as a tool for postmortem interval estimation.
    Falgayrac G; Vitale R; Delannoy Y; Behal H; Penel G; Duponchel L; Colard T
    Talanta; 2022 Nov; 249():123589. PubMed ID: 35691126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman spectroscopy for postmortem interval estimation of human skeletal remains: A scoping review.
    Woess C; Huck CW; Badzoka J; Kappacher C; Arora R; Lindtner RA; Zelger P; Schirmer M; Rabl W; Pallua J
    J Biophotonics; 2023 Oct; 16(10):e202300189. PubMed ID: 37494000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of the post-mortem interval of human skeletal remains using Raman spectroscopy and chemometrics.
    Ortiz-Herrero L; Uribe B; Armas LH; Alonso ML; Sarmiento A; Irurita J; Alonso RM; Maguregui MI; Etxeberria F; Bartolomé L
    Forensic Sci Int; 2021 Dec; 329():111087. PubMed ID: 34736052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of the late postmortem interval using FTIR spectroscopy and chemometrics in human skeletal remains.
    Wang Q; Zhang Y; Lin H; Zha S; Fang R; Wei X; Fan S; Wang Z
    Forensic Sci Int; 2017 Dec; 281():113-120. PubMed ID: 29127892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains.
    Woess C; Unterberger SH; Roider C; Ritsch-Marte M; Pemberger N; Cemper-Kiesslich J; Hatzer-Grubwieser P; Parson W; Pallua JD
    PLoS One; 2017; 12(3):e0174552. PubMed ID: 28334006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential application of Raman spectroscopy for determining burial duration of skeletal remains.
    McLaughlin G; Lednev IK
    Anal Bioanal Chem; 2011 Nov; 401(8):2511-8. PubMed ID: 21870069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Luminol chemiluminescence: contribution to postmortem interval determination of skeletonized remains in Portuguese forensic context.
    Ermida C; Navega D; Cunha E
    Int J Legal Med; 2017 Jul; 131(4):1149-1153. PubMed ID: 28138758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipidomes in Cadaveric Decomposition and Determination of the Postmortem Interval: A Systematic Review.
    Caballero-Moreno L; Luna A; Legaz I
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38256058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timing of blunt force injuries in long bones: the effects of the environment, PMI length and human surrogate model.
    Coelho L; Cardoso HF
    Forensic Sci Int; 2013 Dec; 233(1-3):230-7. PubMed ID: 24314524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human decomposition and the reliability of a 'Universal' model for post mortem interval estimations.
    Cockle DL; Bell LS
    Forensic Sci Int; 2015 Aug; 253():136.e1-9. PubMed ID: 26092190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WE-ASCA: The Weighted-Effect ASCA for Analyzing Unbalanced Multifactorial Designs-A Raman Spectra-Based Example.
    Ali N; Jansen J; van den Doel A; Tinnevelt GH; Bocklitz T
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33375623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of burial period on compact bone microstructure: Histological analysis of matrix loss and cell integrity in human bones exhumed from tropical soil.
    Astolphi RD; de Seixas Alves MT; Evison MP; Francisco RA; Guimarães MA; Iwamura ESM
    Forensic Sci Int; 2019 May; 298():384-392. PubMed ID: 30928778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating postmortem interval for human cadavers in a sub-tropical climate using UV-Vis-near-infrared Spectroscopy.
    Aitkenhead-Peterson JA; Fancher JP; Alexander MB; Hamilton MD; Bytheway JA; Wescott DJ
    J Forensic Sci; 2021 Jan; 66(1):190-201. PubMed ID: 32976653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A test of the citrate method of PMI estimation from skeletal remains.
    Wilson SJ; Christensen AM
    Forensic Sci Int; 2017 Jan; 270():70-75. PubMed ID: 27915189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Outdoor human decomposition in Sweden: A retrospective quantitative study of forensic-taphonomic changes and postmortem interval in terrestrial and aquatic settings.
    Alfsdotter C; Petaros A
    J Forensic Sci; 2021 Jul; 66(4):1348-1363. PubMed ID: 33951184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of fetal pig decomposition processes in burials of variable depths and wrapping.
    Hill MA; Pokines JT
    J Forensic Sci; 2022 Nov; 67(6):2192-2202. PubMed ID: 35957506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman hyperspectral imaging as an effective and highly informative tool to study the diagenetic alteration of fossil bones.
    Dal Sasso G; Angelini I; Maritan L; Artioli G
    Talanta; 2018 Mar; 179():167-176. PubMed ID: 29310218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of preburial insect access on the decomposition rate.
    Bachmann J; Simmons T
    J Forensic Sci; 2010 Jul; 55(4):893-900. PubMed ID: 20412364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Raman micro spectroscopic analysis of relationship between DNA degradation in tissue cells and postmortem interval].
    Xiong P; Guo P; Zhang J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jun; 30(6):1511-5. PubMed ID: 20707140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postmortem Interval Estimation Using Protein Chip Technology Combined with Multivariate Analysis Methods.
    Zhang XD; Jiang YR; Liang XR; Tian T; Jin QQ; Zhang XH; Cao J; DU QX; Sun JH
    Fa Yi Xue Za Zhi; 2023 Apr; 39(2):115-120. PubMed ID: 37277373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.