These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35691349)

  • 1. Leaching and transport of technetium from reducing cementitious waste forms in field lysimeters.
    Santikari VP; Witmer M; Murdoch LC; Kaplan DI; Powell BA
    Sci Total Environ; 2022 Oct; 841():156596. PubMed ID: 35691349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radionuclide Solid:liquid partitioning in an aged, reducing-grout wasteform recovered from a disposal facility.
    Kaplan DI; Almond PM
    J Environ Radioact; 2024 Oct; 279():107514. PubMed ID: 39142005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of technetium speciation in reducing grout.
    Lukens WW; Bucher JI; Shuh DK; Edelstein NM
    Environ Sci Technol; 2005 Oct; 39(20):8064-70. PubMed ID: 16295876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residence time effects on technetium reduction in slag-based cementitious materials.
    Arai Y; Powell BA; Kaplan DI
    J Hazard Mater; 2018 Jan; 342():510-518. PubMed ID: 28881275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution of hydrated lime-based cementitious waste forms during leach testing leading to enhanced technetium retention.
    Bourchy A; Saslow SA; Williams BD; Avalos NM; Um W; Canfield NL; Sweet L; Smith GL; Asmussen RM
    J Hazard Mater; 2022 May; 430():128507. PubMed ID: 35739685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iodine speciation in a silver-amended cementitious system.
    Kaplan DI; Price KA; Xu C; Li D; Lin P; Xing W; Nichols R; Schwehr K; Seaman JC; Ohnuki T; Chen N; Santschi PH
    Environ Int; 2019 May; 126():576-584. PubMed ID: 30852445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical stabilization of chromate in blast furnace slag mixed cementitious materials.
    Meena AH; Kaplan DI; Powell BA; Arai Y
    Chemosphere; 2015 Nov; 138():247-52. PubMed ID: 26086810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a Geochemical Speciation Model for Use in Evaluating Leaching from a Cementitious Radioactive Waste Form.
    Chen Z; Zhang P; Brown KG; Branch JL; van der Sloot HA; Meeussen JCL; Delapp RC; Um W; Kosson DS
    Environ Sci Technol; 2021 Jul; 55(13):8642-8653. PubMed ID: 34132538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cobalt-60, Barium-133, Cesium-137, and Europium-152 migration from cementitious sources through sediment under field conditions.
    Williams RF; Kaplan DI; Erdmann BJ; DeVol TA; Powell BA
    J Environ Radioact; 2024 Dec; 280():107527. PubMed ID: 39244852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaching behavior of aluminum, copper, iron and zinc from cement activated fly ash and slag stabilized soils.
    Mahedi M; Cetin B; Dayioglu AY
    Waste Manag; 2019 Jul; 95():334-355. PubMed ID: 31351620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The heavy metal leaching property and cementitious material preparation by treating municipal solid waste incineration fly ash through the molten salt process.
    Zhao P; Jing M; Feng L; Min B
    Waste Manag Res; 2020 Jan; 38(1):27-34. PubMed ID: 31709930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaching characteristics of steel slag components and their application in cementitious property prediction.
    Li Z; Zhao S; Zhao X; He T
    J Hazard Mater; 2012 Jan; 199-200():448-52. PubMed ID: 22088502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eleven-year field study of Pu migration from Pu III, IV, and VI sources.
    Kaplan DI; Demirkanli DI; Gumapas L; Powell BA; Fjeld RA; Molz FJ; Serkiz SM
    Environ Sci Technol; 2006 Jan; 40(2):443-8. PubMed ID: 16468387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydraulic activity of cement mixed with slag from vitrified solid waste incinerator fly ash.
    Lin KL; Wang KS; Tzeng BY; Lin CY
    Waste Manag Res; 2003 Dec; 21(6):567-74. PubMed ID: 14986718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reductive solidification/stabilization of chromate in municipal solid waste incineration fly ash by ascorbic acid and blast furnace slag.
    Zhou X; Zhou M; Wu X; Han Y; Geng J; Wang T; Wan S; Hou H
    Chemosphere; 2017 Sep; 182():76-84. PubMed ID: 28494363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cement incorporation on the leaching characteristics of elements from fly ash and slag treated soils.
    Mahedi M; Cetin B; Dayioglu AY
    J Environ Manage; 2020 Jan; 253():109720. PubMed ID: 31654932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the Suitability of Different Types of Slag and Its Influence on the Quality of Green Grouts Obtained by Partial Replacement of Cement.
    Perez-Garcia F; Parron-Rubio ME; Garcia-Manrique JM; Rubio-Cintas MD
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30974784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of carbonation on leaching of constituents from a cementitious waste form for treatment of low activity waste at the DOE Hanford site.
    Zhang P; Chen Z; Brown KG; Garrabrants AC; Delapp R; Meeussen JCL; van der Sloot HA; Kosson DS
    Waste Manag; 2022 May; 144():431-444. PubMed ID: 35461054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaching of monolithic and granular alkali activated slag-fly ash materials, as a function of the mixture design.
    Keulen A; van Zomeren A; Dijkstra JJ
    Waste Manag; 2018 Aug; 78():497-508. PubMed ID: 32559938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Natural Organic Matter on Plutonium Vadose Zone Migration from an NH
    Maloubier M; Emerson H; Peruski K; Kersting AB; Zavarin M; Almond PM; Kaplan DI; Powell BA
    Environ Sci Technol; 2020 Mar; 54(5):2688-2697. PubMed ID: 31942795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.