These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35691352)

  • 1. Effects of nitrogen and phosphorus availability on cadmium tolerance in the marine diatom Phaeodactylum tricornutum.
    Ma J; Chen F; Zhou B; Zhang Z; Pan K
    Sci Total Environ; 2022 Sep; 838(Pt 4):156615. PubMed ID: 35691352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms underlying silicon-dependent metal tolerance in the marine diatom Phaeodactylum tricornutum.
    Zhou B; Ma J; Chen F; Zou Y; Wei Y; Zhong H; Pan K
    Environ Pollut; 2020 Jul; 262():114331. PubMed ID: 32443203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of silicon in combating cadmium challenge in the Marine diatom Phaeodactylum tricornutum.
    Ma J; Zhou B; Tan Q; Zhang L; Pan K
    J Hazard Mater; 2020 May; 389():121903. PubMed ID: 31879097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects and mechanisms of glyphosate as phosphorus nutrient on element stoichiometry and metabolism in the diatom
    Wang C; Li J; Li S; Lin S
    Appl Environ Microbiol; 2024 Feb; 90(2):e0213123. PubMed ID: 38265214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How marine diatoms cope with metal challenge: Insights from the morphotype-dependent metal tolerance in Phaeodactylum tricornutum.
    Ma J; Zhou B; Chen F; Pan K
    Ecotoxicol Environ Saf; 2021 Jan; 208():111715. PubMed ID: 33396046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silicon limitation reduced the adsorption of cadmium in marine diatoms.
    Ma J; Zhou B; Duan D; Wei Y; Pan K
    Aquat Toxicol; 2018 Sep; 202():136-144. PubMed ID: 30031253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Ca
    Helliwell KE; Harrison EL; Christie-Oleza JA; Rees AP; Kleiner FH; Gaikwad T; Downe J; Aguilo-Ferretjans MM; Al-Moosawi L; Brownlee C; Wheeler GL
    Curr Biol; 2021 Mar; 31(5):978-989.e4. PubMed ID: 33373640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadmium toxicity to two marine phytoplankton under different nutrient conditions.
    Miao AJ; Wang WX
    Aquat Toxicol; 2006 Jun; 78(2):114-26. PubMed ID: 16616380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytate as a Phosphorus Nutrient with Impacts on Iron Stress-Related Gene Expression for Phytoplankton: Insights from the Diatom
    Li J; Zhang K; Lin X; Li L; Lin S
    Appl Environ Microbiol; 2022 Jan; 88(2):e0209721. PubMed ID: 34757820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms underlying the alleviated cadmium toxicity in marine diatoms adapted to ocean acidification.
    Zhang Z; Ma J; Chen F; Chen Y; Pan K; Liu H
    J Hazard Mater; 2024 Feb; 463():132804. PubMed ID: 37890381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic effect of silicon availability and salinity on metal adsorption in a common estuarine diatom.
    Chen F; Ma J; Pan K
    J Environ Sci (China); 2025 Feb; 148():364-374. PubMed ID: 39095171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examination of metabolic responses to phosphorus limitation via proteomic analyses in the marine diatom Phaeodactylum tricornutum.
    Feng TY; Yang ZK; Zheng JW; Xie Y; Li DW; Murugan SB; Yang WD; Liu JS; Li HY
    Sci Rep; 2015 May; 5():10373. PubMed ID: 26020491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum.
    Abida H; Dolch LJ; Meï C; Villanova V; Conte M; Block MA; Finazzi G; Bastien O; Tirichine L; Bowler C; Rébeillé F; Petroutsos D; Jouhet J; Maréchal E
    Plant Physiol; 2015 Jan; 167(1):118-36. PubMed ID: 25489020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined effects of CO
    Dong F; Zhu X; Qian W; Wang P; Wang J
    Mar Pollut Bull; 2020 Jan; 150():110594. PubMed ID: 31727316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting cadmium toxicity with the kinetics of phytochelatin induction in a marine diatom.
    Wu Y; Yuan Y; Yuan H; Zhang W; Zhang L
    Aquat Toxicol; 2019 Feb; 207():101-109. PubMed ID: 30557755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of Marine Diatom Skeletonema marinoi to Nutrient Deficiency: Programmed Cell Death.
    Wang H; Chen F; Mi T; Liu Q; Yu Z; Zhen Y
    Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31757826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survival of Nutrient-Starved Diatoms Under Ocean Acidification: Perspective from Nutrient Sensing, Cadmium Detection, and Nitrogen Assimilation.
    Zhang Z; Pan K; Liu H
    Bull Environ Contam Toxicol; 2023 Dec; 112(1):21. PubMed ID: 38150047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cu transport and complexation by the marine diatom Phaeodactylum tricornutum: Implications for trace metal complexation kinetics in the surface ocean.
    González-Dávila M; Maldonado MT; González AG; Guo J; González-Santana D; Martel A; Santana-Casiano JM
    Sci Total Environ; 2024 Apr; 919():170752. PubMed ID: 38340864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of Marine Diatom-Dinoflagellate Competition to Multiple Environmental Drivers: Abundance, Elemental, and Biochemical Aspects.
    Bi R; Cao Z; Ismar-Rebitz SMH; Sommer U; Zhang H; Ding Y; Zhao M
    Front Microbiol; 2021; 12():731786. PubMed ID: 34526982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic-Guided Phosphonate Utilization Analysis Unveils Evidence of Clathrin-Mediated Endocytosis and Phospholipid Synthesis in the Model Diatom,
    Shu H; You Y; Wang H; Wang J; Li L; Ma J; Lin X
    mSystems; 2022 Dec; 7(6):e0056322. PubMed ID: 36317887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.