These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 35692759)
1. The Machine Learning Model for Distinguishing Pathological Subtypes of Non-Small Cell Lung Cancer. Zhao H; Su Y; Wang M; Lyu Z; Xu P; Jiao Y; Zhang L; Han W; Tian L; Fu P Front Oncol; 2022; 12():875761. PubMed ID: 35692759 [TBL] [Abstract][Full Text] [Related]
2. Machine learning based on clinico-biological features integrated Ren C; Zhang J; Qi M; Zhang J; Zhang Y; Song S; Sun Y; Cheng J Eur J Nucl Med Mol Imaging; 2021 May; 48(5):1538-1549. PubMed ID: 33057772 [TBL] [Abstract][Full Text] [Related]
3. Analysis of Cross-Combinations of Feature Selection and Machine-Learning Classification Methods Based on [ Gómez OV; Herraiz JL; Udías JM; Haug A; Papp L; Cioni D; Neri E Cancers (Basel); 2022 Jun; 14(12):. PubMed ID: 35740588 [TBL] [Abstract][Full Text] [Related]
4. Use of radiomics based on Zhou Y; Ma XL; Zhang T; Wang J; Zhang T; Tian R Eur J Nucl Med Mol Imaging; 2021 Aug; 48(9):2904-2913. PubMed ID: 33547553 [TBL] [Abstract][Full Text] [Related]
5. Value of multi-center Zuo Y; Liu L; Chang C; Yan H; Wang L; Sun D; Ruan M; Lei B; Xia X; Xie W; Song S; Huang G Med Phys; 2024 Jul; 51(7):4872-4887. PubMed ID: 38285641 [TBL] [Abstract][Full Text] [Related]
6. Radiomics analysis for the differentiation of autoimmune pancreatitis and pancreatic ductal adenocarcinoma in Zhang Y; Cheng C; Liu Z; Wang L; Pan G; Sun G; Chang Y; Zuo C; Yang X Med Phys; 2019 Oct; 46(10):4520-4530. PubMed ID: 31348535 [TBL] [Abstract][Full Text] [Related]
7. A subregion-based positron emission tomography/computed tomography (PET/CT) radiomics model for the classification of non-small cell lung cancer histopathological subtypes. Shen H; Chen L; Liu K; Zhao K; Li J; Yu L; Ye H; Zhu W Quant Imaging Med Surg; 2021 Jul; 11(7):2918-2932. PubMed ID: 34249623 [TBL] [Abstract][Full Text] [Related]
8. Machine learning for differentiating lung squamous cell cancer from adenocarcinoma using Clinical-Metabolic characteristics and 18F-FDG PET/CT radiomics. Zhang Y; Liu H; Chang C; Yin Y; Wang R PLoS One; 2024; 19(4):e0300170. PubMed ID: 38568892 [TBL] [Abstract][Full Text] [Related]
9. Histologic subtype classification of non-small cell lung cancer using PET/CT images. Han Y; Ma Y; Wu Z; Zhang F; Zheng D; Liu X; Tao L; Liang Z; Yang Z; Li X; Huang J; Guo X Eur J Nucl Med Mol Imaging; 2021 Feb; 48(2):350-360. PubMed ID: 32776232 [TBL] [Abstract][Full Text] [Related]
10. Application of Machine Learning Analyses Using Clinical and [ Kawaji K; Nakajo M; Shinden Y; Jinguji M; Tani A; Hirahara D; Kitazono I; Ohtsuka T; Yoshiura T Mol Imaging Biol; 2023 Oct; 25(5):923-934. PubMed ID: 37193804 [TBL] [Abstract][Full Text] [Related]
11. Identifying pathological subtypes of non-small-cell lung cancer by using the radiomic features of Sha X; Gong G; Qiu Q; Duan J; Li D; Yin Y Transl Cancer Res; 2019 Sep; 8(5):1741-1749. PubMed ID: 35116924 [TBL] [Abstract][Full Text] [Related]
12. Preliminary study on the ability of the machine learning models based on Wang J; Zhou Y; Zhou J; Liu H; Li X Eur J Radiol; 2024 Jul; 176():111531. PubMed ID: 38820949 [TBL] [Abstract][Full Text] [Related]
13. Predicting EGFR mutation subtypes in lung adenocarcinoma using Liu Q; Sun D; Li N; Kim J; Feng D; Huang G; Wang L; Song S Transl Lung Cancer Res; 2020 Jun; 9(3):549-562. PubMed ID: 32676319 [TBL] [Abstract][Full Text] [Related]
14. A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts ALK Rearrangement Status in Lung Adenocarcinoma. Chang C; Sun X; Wang G; Yu H; Zhao W; Ge Y; Duan S; Qian X; Wang R; Lei B; Wang L; Liu L; Ruan M; Yan H; Liu C; Chen J; Xie W Front Oncol; 2021; 11():603882. PubMed ID: 33738250 [TBL] [Abstract][Full Text] [Related]
15. Application of a Machine Learning Approach for the Analysis of Clinical and Radiomic Features of Pretreatment [ Nakajo M; Jinguji M; Tani A; Kikuno H; Hirahara D; Togami S; Kobayashi H; Yoshiura T Mol Imaging Biol; 2021 Oct; 23(5):756-765. PubMed ID: 33763816 [TBL] [Abstract][Full Text] [Related]
16. The Usefulness of Machine Learning-Based Evaluation of Clinical and Pretreatment [ Nakajo M; Kawaji K; Nagano H; Jinguji M; Mukai A; Kawabata H; Tani A; Hirahara D; Yamashita M; Yoshiura T Mol Imaging Biol; 2023 Apr; 25(2):303-313. PubMed ID: 35864282 [TBL] [Abstract][Full Text] [Related]
17. Machine learning approach using Nakajo M; Hirahara D; Jinguji M; Ojima S; Hirahara M; Tani A; Takumi K; Kamimura K; Ohishi M; Yoshiura T Jpn J Radiol; 2024 Jul; 42(7):744-752. PubMed ID: 38491333 [TBL] [Abstract][Full Text] [Related]
18. A Machine-Learning Approach Using PET-Based Radiomics to Predict the Histological Subtypes of Lung Cancer. Hyun SH; Ahn MS; Koh YW; Lee SJ Clin Nucl Med; 2019 Dec; 44(12):956-960. PubMed ID: 31689276 [TBL] [Abstract][Full Text] [Related]
19. PET/CT Radiomic Features: A Potential Biomarker for EGFR Mutation Status and Survival Outcome Prediction in NSCLC Patients Treated With TKIs. Yang L; Xu P; Li M; Wang M; Peng M; Zhang Y; Wu T; Chu W; Wang K; Meng H; Zhang L Front Oncol; 2022; 12():894323. PubMed ID: 35800046 [TBL] [Abstract][Full Text] [Related]
20. Efficient 18F-fluorodeoxyglucose positron emission tomography/computed tomography-based machine learning model for predicting epidermal growth factor receptor mutations in non-small cell lung cancer. Ruan D; Fang J; Teng X Q J Nucl Med Mol Imaging; 2024 Mar; 68(1):70-83. PubMed ID: 35420272 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]