BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 3569281)

  • 1. Changes in the quaternary structure of phosphoenolpyruvate carboxylase induced by ionic strength affect its catalytic activity.
    Wagner R; Gonzalez DH; Podesta FE; Andreo CS
    Eur J Biochem; 1987 May; 164(3):661-6. PubMed ID: 3569281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dimeric form of phosphoenolpyruvate carboxylase isolated from maize: physical and kinetic properties.
    Jawali N
    Arch Biochem Biophys; 1990 Feb; 277(1):61-8. PubMed ID: 2306125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of phosphoenolpyruvate carboxylase from Crassula by interconversion of oligomeric forms.
    Wu MX; Wedding RT
    Arch Biochem Biophys; 1985 Aug; 240(2):655-62. PubMed ID: 4026299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification, oligomerization state and malate sensitivity of maize leaf phosphoenolpyruvate carboxylase.
    McNaughton GA; Fewson CA; Wilkins MB; Nimmo HG
    Biochem J; 1989 Jul; 261(2):349-55. PubMed ID: 2775222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the aggregation state of maize phosphoenolpyruvate carboxylase: evidence from dynamic light-scattering measurements.
    Wu MX; Meyer CR; Willeford KO; Wedding RT
    Arch Biochem Biophys; 1990 Sep; 281(2):324-9. PubMed ID: 2393302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active-site-directed inhibition of phosphoenolpyruvate carboxylase from maize leaves by bromopyruvate.
    Gonzalez DH; Iglesias AA; Andreo CS
    Arch Biochem Biophys; 1986 Feb; 245(1):179-86. PubMed ID: 3947097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proximity between fluorescent probes attached to four essential lysyl residues in phosphoenolpyruvate carboxylase. A resonance energy transfer study.
    Wagner R; Podestá FE; González DH; Andreo CS
    Eur J Biochem; 1988 May; 173(3):561-8. PubMed ID: 2453360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoenolpyruvate carboxylase from pennywort (Umbilicus rupestris). Changes in properties after exposure to water stress.
    Daniel PP; Bryant JA; Woodward FI
    Biochem J; 1984 Mar; 218(2):387-93. PubMed ID: 6712622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of an essential amino group of phosphoenolpyruvate carboxylase from maize leaves by pyridoxal phosphate and by pyridoxal phosphate-sensitized photooxidation.
    Podesta FE; Iglesias AA; Andreo CS
    Arch Biochem Biophys; 1986 May; 246(2):546-53. PubMed ID: 3085590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADP-dependent malate dehydrogenase (decarboxylating) from sugar cane leaves. Kinetic properties of different oligomeric structures.
    Iglesias AA; Andreo CS
    Eur J Biochem; 1990 Sep; 192(3):729-33. PubMed ID: 2209619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of pH on inactivation of maize phosphoenolpyruvate carboxylase.
    Wedding RT; Black MK
    Arch Biochem Biophys; 1990 Nov; 282(2):284-9. PubMed ID: 2122805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light/dark regulation of maize leaf phosphoenolpyruvate carboxylase by in vivo phosphorylation.
    Jiao JA; Chollet R
    Arch Biochem Biophys; 1988 Mar; 261(2):409-17. PubMed ID: 3355158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoenol-3-bromopyruvate. A mechanism-based inhibitor of phosphoenolpyruvate carboxylase from maize.
    O'Leary MH; Diaz E
    J Biol Chem; 1982 Dec; 257(24):14603-5. PubMed ID: 7174654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereoselectivity of the interaction of E- and Z-2-phosphoenolbutyrate with maize leaf phosphoenolpyruvate carboxylase.
    Gonzalez DH; Andreo CS
    Eur J Biochem; 1988 Apr; 173(2):339-43. PubMed ID: 3360012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic analysis of effectors of phosphoenolpyruvate carboxylase from Bryophyllum fedtschenkoi.
    Pays AG; Jones R; Wilkins MB; Fewson CA; Malcolm AD
    Biochim Biophys Acta; 1980 Jul; 614(1):151-62. PubMed ID: 7397199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Re-examination of the roles of PEP and Mg2+ in the reaction catalysed by the phosphorylated and non-phosphorylated forms of phosphoenolpyruvate carboxylase from leaves of Zea mays. Effects of the activators glucose 6-phosphate and glycine.
    Tovar-Méndez A; Rodríguez-Sotres R; López-Valentín DM; Muñoz-Clares RA
    Biochem J; 1998 Jun; 332 ( Pt 3)(Pt 3):633-42. PubMed ID: 9620864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of pH on substrate form specificity of phosphoenolpyruvate carboxylase purified from Crassula argentea.
    Meyer CR; Rustin P; Black MK; Wedding RT
    Arch Biochem Biophys; 1990 May; 278(2):365-72. PubMed ID: 2327793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of oligomerization in regulation of maize phosphoenolpyruvate carboxylase activity. Influence of Mg-PEP and malate on the oligomeric equilibrium of PEP carboxylase.
    Willeford KO; Wu MX; Meyer CR; Wedding RT
    Biochem Biophys Res Commun; 1990 Apr; 168(2):778-85. PubMed ID: 2334435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and isotope effect studies of maize phosphoenolpyruvate carboxylase.
    O'Leary MH; Rife JE; Slater JD
    Biochemistry; 1981 Dec; 20(25):7308-14. PubMed ID: 7317383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1-Hydroxycyclopropane carboxylic acid phosphate: a potent inhibitor of enzymes metabolizing phosphoenolpyruvate.
    O'Leary MH; DeGooyer WJ; Dougherty TM; Anderson V
    Biochem Biophys Res Commun; 1981 Jun; 100(3):1320-5. PubMed ID: 7023482
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.