BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 35692845)

  • 21. Integration tools for scRNA-seq data and spatial transcriptomics sequencing data.
    Yan C; Zhu Y; Chen M; Yang K; Cui F; Zou Q; Zhang Z
    Brief Funct Genomics; 2024 Jan; ():. PubMed ID: 38267084
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and disease biology.
    Saviano A; Henderson NC; Baumert TF
    J Hepatol; 2020 Nov; 73(5):1219-1230. PubMed ID: 32534107
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis.
    Lohoff T; Ghazanfar S; Missarova A; Koulena N; Pierson N; Griffiths JA; Bardot ES; Eng CL; Tyser RCV; Argelaguet R; Guibentif C; Srinivas S; Briscoe J; Simons BD; Hadjantonakis AK; Göttgens B; Reik W; Nichols J; Cai L; Marioni JC
    Nat Biotechnol; 2022 Jan; 40(1):74-85. PubMed ID: 34489600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probabilistic cell/domain-type assignment of spatial transcriptomics data with SpatialAnno.
    Shi X; Yang Y; Ma X; Zhou Y; Guo Z; Wang C; Liu J
    Nucleic Acids Res; 2023 Dec; 51(22):e115. PubMed ID: 37941153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uncovering cellular networks in branching morphogenesis using single-cell transcriptomics.
    Goodwin K; Nelson CM
    Curr Top Dev Biol; 2021; 143():239-280. PubMed ID: 33820623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Model-based prediction of spatial gene expression via generative linear mapping.
    Okochi Y; Sakaguchi S; Nakae K; Kondo T; Naoki H
    Nat Commun; 2021 Jun; 12(1):3731. PubMed ID: 34140477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deciphering the Spatial Modular Patterns of Tissues by Integrating Spatial and Single-Cell Transcriptomic Data.
    Shan X; Chen J; Dong K; Zhou W; Zhang S
    J Comput Biol; 2022 Jul; 29(7):650-663. PubMed ID: 35727094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A flexible network-based imputing-and-fusing approach towards the identification of cell types from single-cell RNA-seq data.
    Qi Y; Guo Y; Jiao H; Shang X
    BMC Bioinformatics; 2020 Jun; 21(1):240. PubMed ID: 32527285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A molecularly defined and spatially resolved cell atlas of the whole mouse brain.
    Zhang M; Pan X; Jung W; Halpern A; Eichhorn SW; Lei Z; Cohen L; Smith KA; Tasic B; Yao Z; Zeng H; Zhuang X
    bioRxiv; 2023 Mar; ():. PubMed ID: 36945367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integration of Computational Analysis and Spatial Transcriptomics in Single-cell Studies.
    Wang R; Peng G; Tam PPL; Jing N
    Genomics Proteomics Bioinformatics; 2023 Feb; 21(1):13-23. PubMed ID: 35901961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DEEPsc: A Deep Learning-Based Map Connecting Single-Cell Transcriptomics and Spatial Imaging Data.
    Maseda F; Cang Z; Nie Q
    Front Genet; 2021; 12():636743. PubMed ID: 33833776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HyperGCN: an effective deep representation learning framework for the integrative analysis of spatial transcriptomics data.
    Ma Y; Liu L; Zhao Y; Hang B; Zhang Y
    BMC Genomics; 2024 Jun; 25(1):566. PubMed ID: 38840049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advances in spatial transcriptomics and related data analysis strategies.
    Du J; Yang YC; An ZJ; Zhang MH; Fu XH; Huang ZF; Yuan Y; Hou J
    J Transl Med; 2023 May; 21(1):330. PubMed ID: 37202762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An introduction to spatial transcriptomics for biomedical research.
    Williams CG; Lee HJ; Asatsuma T; Vento-Tormo R; Haque A
    Genome Med; 2022 Jun; 14(1):68. PubMed ID: 35761361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. JOINT for large-scale single-cell RNA-sequencing analysis via soft-clustering and parallel computing.
    Cui T; Wang T
    BMC Genomics; 2021 Jan; 22(1):47. PubMed ID: 33430769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of similarity metrics on single-cell RNA-seq data clustering.
    Kim T; Chen IR; Lin Y; Wang AY; Yang JYH; Yang P
    Brief Bioinform; 2019 Nov; 20(6):2316-2326. PubMed ID: 30137247
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inferring spatial and signaling relationships between cells from single cell transcriptomic data.
    Cang Z; Nie Q
    Nat Commun; 2020 Apr; 11(1):2084. PubMed ID: 32350282
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of high variability in gene expression from single-cell RNA-seq profiling.
    Chen HI; Jin Y; Huang Y; Chen Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predictive and robust gene selection for spatial transcriptomics.
    Covert I; Gala R; Wang T; Svoboda K; Sümbül U; Lee SI
    Nat Commun; 2023 Apr; 14(1):2091. PubMed ID: 37045821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.