These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 35692845)

  • 41. Spatial transcriptomics in neuroscience.
    Jung N; Kim TK
    Exp Mol Med; 2023 Oct; 55(10):2105-2115. PubMed ID: 37779145
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Poisson reduced-rank regression model for association mapping in sequencing data.
    Fitzgerald T; Jones A; Engelhardt BE
    BMC Bioinformatics; 2022 Dec; 23(1):529. PubMed ID: 36482321
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 44. scPNMF: sparse gene encoding of single cells to facilitate gene selection for targeted gene profiling.
    Song D; Li K; Hemminger Z; Wollman R; Li JJ
    Bioinformatics; 2021 Jul; 37(Suppl_1):i358-i366. PubMed ID: 34252925
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Principles of Spatial Transcriptomics Analysis: A Practical Walk-Through in Kidney Tissue.
    Noel T; Wang QS; Greka A; Marshall JL
    Front Physiol; 2021; 12():809346. PubMed ID: 35069263
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities.
    Miller BF; Bambah-Mukku D; Dulac C; Zhuang X; Fan J
    Genome Res; 2021 Oct; 31(10):1843-1855. PubMed ID: 34035045
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single-cell and spatial transcriptomics: Advances in heart development and disease applications.
    Long X; Yuan X; Du J
    Comput Struct Biotechnol J; 2023; 21():2717-2731. PubMed ID: 37181659
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatial transcriptomics in human skin research.
    Tekkela S; Theocharidis G; McGrath JA; Onoufriadis A
    Exp Dermatol; 2023 Jun; 32(6):731-739. PubMed ID: 37150587
    [TBL] [Abstract][Full Text] [Related]  

  • 49. From multitude to singularity: An up-to-date overview of scRNA-seq data generation and analysis.
    Carangelo G; Magi A; Semeraro R
    Front Genet; 2022; 13():994069. PubMed ID: 36263428
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spatially aware dimension reduction for spatial transcriptomics.
    Shang L; Zhou X
    Nat Commun; 2022 Nov; 13(1):7203. PubMed ID: 36418351
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
    Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W
    Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ScRNA-seq and spatial transcriptomics: exploring the occurrence and treatment of coronary-related diseases starting from development.
    Liu C; Yang F; Su X; Zhang Z; Xing Y
    Front Cardiovasc Med; 2023; 10():1064949. PubMed ID: 37416923
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differential gene expression analysis of spatial transcriptomic experiments using spatial mixed models.
    Ospina OE; Soupir AC; Manjarres-Betancur R; Gonzalez-Calderon G; Yu X; Fridley BL
    Sci Rep; 2024 May; 14(1):10967. PubMed ID: 38744956
    [TBL] [Abstract][Full Text] [Related]  

  • 55. scEFSC: Accurate single-cell RNA-seq data analysis via ensemble consensus clustering based on multiple feature selections.
    Bian C; Wang X; Su Y; Wang Y; Wong KC; Li X
    Comput Struct Biotechnol J; 2022; 20():2181-2197. PubMed ID: 35615016
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A hybrid machine learning and regression method for cell type deconvolution of spatial barcoding-based transcriptomic data.
    Liu Y; Li N; Qi J; Xu G; Zhao J; Wang N; Huang X; Jiang W; Justet A; Adams TS; Homer R; Amei A; Rosas IO; Kaminski N; Wang Z; Yan X
    bioRxiv; 2023 Aug; ():. PubMed ID: 37662370
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improving bulk RNA-seq classification by transferring gene signature from single cells in acute myeloid leukemia.
    Wang R; Zheng X; Wang J; Wan S; Song F; Wong MH; Leung KS; Cheng L
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136933
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single-cell and spatial transcriptomics approaches of cardiovascular development and disease.
    Roth R; Kim S; Kim J; Rhee S
    BMB Rep; 2020 Aug; 53(8):393-399. PubMed ID: 32684243
    [TBL] [Abstract][Full Text] [Related]  

  • 59. BATMAN: Fast and Accurate Integration of Single-Cell RNA-Seq Datasets via Minimum-Weight Matching.
    Mandric I; Hill BL; Freund MK; Thompson M; Halperin E
    iScience; 2020 Jun; 23(6):101185. PubMed ID: 32504875
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gene panel selection for targeted spatial transcriptomics.
    Zhang Y; Petukhov V; Biederstedt E; Que R; Zhang K; Kharchenko PV
    Genome Biol; 2024 Jan; 25(1):35. PubMed ID: 38273415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.