BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 3569293)

  • 1. Regulation of fatty acid oxidation in isolated hepatocytes and liver mitochondria from newborn rabbits.
    Herbin C; Pegorier JP; Duee PH; Kohl C; Girard J
    Eur J Biochem; 1987 May; 165(1):201-7. PubMed ID: 3569293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of ketogenesis and fatty acid oxidation by glucagon and cyclic AMP in cultured hepatocytes from rabbit fetuses. Evidence for a decreased sensitivity of carnitine palmitoyltransferase I to malonyl-CoA inhibition after glucagon or cyclic AMP treatment.
    Pégorier JP; Garcia-Garcia MV; Prip-Buus C; Duée PH; Kohl C; Girard J
    Biochem J; 1989 Nov; 264(1):93-100. PubMed ID: 2557835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that the sensitivity of carnitine palmitoyltransferase I to inhibition by malonyl-CoA is an important site of regulation of hepatic fatty acid oxidation in the fetal and newborn rabbit. Perinatal development and effects of pancreatic hormones in cultured rabbit hepatocytes.
    Prip-Buus C; Pegorier JP; Duee PH; Kohl C; Girard J
    Biochem J; 1990 Jul; 269(2):409-15. PubMed ID: 2167069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hepatic triglyceride hydrolysis and development of ketogenesis in rabbits.
    Duee PH; Pegorier JP; el Manoubi L; Herbin C; Kohl C; Girard J
    Am J Physiol; 1985 Nov; 249(5 Pt 1):E478-84. PubMed ID: 4061638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of pathways of extramitochondrial fatty acid oxidation and liver fatty acid-binding protein by long-chain monocarboxylic fatty acids in hepatocytes. Effect of inhibition of carnitine palmitoyltransferase I.
    Kaikaus RM; Sui Z; Lysenko N; Wu NY; Ortiz de Montellano PR; Ockner RK; Bass NM
    J Biol Chem; 1993 Dec; 268(36):26866-71. PubMed ID: 8262919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatic ketogenesis in newborn pigs is limited by low mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase activity.
    Duée PH; Pégorier JP; Quant PA; Herbin C; Kohl C; Girard J
    Biochem J; 1994 Feb; 298 ( Pt 1)(Pt 1):207-12. PubMed ID: 7907471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of hepatic fatty acid oxidation at carnitine palmitoyltransferase I by the peroxisome proliferator 2-hydroxy-3-propyl-4-[6-(tetrazol-5-yl) hexyloxy]acetophenone.
    Foxworthy PS; Eacho PI
    Biochem J; 1988 Jun; 252(2):409-14. PubMed ID: 3415664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered hepatic mitochondrial fatty acid oxidation and ketogenesis in endotoxic rats.
    Takeyama N; Itoh Y; Kitazawa Y; Tanaka T
    Am J Physiol; 1990 Oct; 259(4 Pt 1):E498-505. PubMed ID: 2221051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative metabolism of long-chain fatty acids in mitochondria from sheep and rat liver. Evidence that sheep conserve linoleate by limiting its oxidation.
    Reid JC; Husbands DR
    Biochem J; 1985 Jan; 225(1):233-7. PubMed ID: 3977825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for an impaired long-chain fatty acid oxidation and ketogenesis in Fao hepatoma cells.
    Prip-Buus C; Bouthillier-Voisin AC; Kohl C; Demaugre F; Girard J; Pegorier JP
    Eur J Biochem; 1992 Oct; 209(1):291-8. PubMed ID: 1356769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acylcarnitine formation and fatty acid oxidation in hepatocytes from rats treated with tetradecylthioacetic acid (a 3-thia fatty acid).
    Skrede S; Bremer J
    Biochim Biophys Acta; 1993 Apr; 1167(2):189-96. PubMed ID: 8466948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty acid metabolism in hepatocytes isolated from rats adapted to high-fat diets containing long- or medium-chain triacylglycerols.
    Pégorier JP; Duée PH; Herbin C; Laulan PY; Bladé C; Peret J; Girard J
    Biochem J; 1988 Feb; 249(3):801-6. PubMed ID: 3355499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carnitine palmitoyltransferase I (CPT I) activity and its regulation by malonyl-CoA are modulated by age and cold exposure in skeletal muscle mitochondria from newborn pigs.
    Schmidt I; Herpin P
    J Nutr; 1998 May; 128(5):886-93. PubMed ID: 9566999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carnitine palmitoyltransferase I control of acetogenesis, the major pathway of fatty acid {beta}-oxidation in liver of neonatal swine.
    Lin X; Shim K; Odle J
    Am J Physiol Regul Integr Comp Physiol; 2010 May; 298(5):R1435-43. PubMed ID: 20237302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes of hepatic fatty acid metabolism produced by chronic thioacetamide administration in rats.
    Nozu F; Takeyama N; Tanaka T
    Hepatology; 1992 Jun; 15(6):1099-106. PubMed ID: 1592350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Octanoate metabolism in isolated hepatocytes and mitochondria from fetal, newborn and adult rabbit. Evidence for a high capacity for octanoate esterification in term fetal liver.
    Pégorier JP; Duée PH; Clouet P; Kohl C; Herbin C; Girard J
    Eur J Biochem; 1989 Oct; 184(3):681-6. PubMed ID: 2806250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and regulation of ketogenesis in hepatocytes isolated from newborn rats.
    Ferré P; Satabin P; Decaux JF; Escriva F; Girard J
    Biochem J; 1983 Sep; 214(3):937-42. PubMed ID: 6626164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathway of alpha-linolenic acid through the mitochondrial outer membrane in the rat liver and influence on the rate of oxidation. Comparison with linoleic and oleic acids.
    Clouet P; Niot I; Bézard J
    Biochem J; 1989 Nov; 263(3):867-73. PubMed ID: 2597132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of hepatic fatty acid oxidation by bezafibrate and bezafibroyl CoA.
    Eacho PI; Foxworthy PS
    Biochem Biophys Res Commun; 1988 Dec; 157(3):1148-53. PubMed ID: 3264699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the hepatic malonyl-CoA-carnitine palmitoyltransferase 1A partnership creates a metabolic switch allowing oxidation of de novo fatty acids.
    Akkaoui M; Cohen I; Esnous C; Lenoir V; Sournac M; Girard J; Prip-Buus C
    Biochem J; 2009 May; 420(3):429-38. PubMed ID: 19302064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.